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Innate and adaptive immune responses to viral infection and
vaccination
Taiki Aoshi1,2, Shohei Koyama3, Kouji Kobiyama1,2, Shizuo Akira4 and
Ken J Ishii1,2
Recent accumulating evidence suggests that the human

immune system possesses a variety of innate receptors that

recognize, distinguish, and respond to viral infections and to

vaccination. These include Toll-like receptors, C-type lectin

receptors, RIG-I-like receptors, Nod-like receptors and

possibly AIM2-like receptors. However, the precise

mechanisms by which these receptors exert their critical roles

in the induction of virus-specific adaptive immune responses

have not been fully elucidated. In this review, we discuss recent

advances in our understanding of the innate immune

recognition of viruses and the differential connection to the

adaptive immune responses induced by infection or

vaccination, with a particular focus on the influenza virus.
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Introduction
Several families of innate immune receptors, including

Toll-like receptors (TLRs) [1], C-type lectin receptors

[2], RIG-I-like receptors (RLRs) [3], Nod-like receptors

(NLRs) [4], and AIM2-like receptors (ALRs) [5] have

been identified over the last decade. Generally, these

germ-line-encoded receptors recognize ‘non-self’ mol-

ecules derived from a variety of microbes. Some of these

receptors also recognize danger signals sent out by

damaged cells/tissues [6]. These innate immune recep-

tors are critical for the initiation and regulation of host

immune responses against infection and autoimmunity
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[7]. Furthermore, it is evident that innate immune

responses are extremely important for establishing effec-

tive adaptive immune responses to infection and vaccina-

tion [8�,9,10]; although it is still not clear whether all

innate responses contribute equally to the induction of

adaptive responses [8�,11�,12�]. In the following sections,

we briefly review the current knowledge about virus

recognition by innate immune receptors, and discuss

the connections between the innate and adaptive

immune responses, using influenza virus as an example.

The innate immune system may distinguish
between the presence of a virus and viral
infection
In addition to bacteria and parasites, viruses are a major

cause of infectious diseases. Because of their diverse

organ/tissue tropisms, genomic structure (positive or

negative stranded, single or double stranded, RNA or

DNA) and pathogenic lifecycles, host cells can recognize

viruses through a variety of innate immune receptors.

Extracellular viruses are detected by transmembrane

receptors such as TLRs, and cytosolic viral infections

are detected by cytosolic receptors such as RLRs, NLRs,

and ALRs (Figure 1). This diverse set of innate receptors

may also allow the host immune system to determine viral

status — live or dead, replicating or not replicating,

pathogenic or non-pathogenic — in a manner similar to

that recently proposed for bacterial infection [13]. These

innate immune receptors trigger signaling cascades that

are generally integrated with innate responses, such as

nuclear factor kappa B (NF-kB)-dependent cytokine

responses, interferon regulatory factor (IRF)-dependent

IFN-a/b responses, and inflammasome/caspase-1-de-

pendent IL-1b responses. IFN-a/b are the major cyto-

kines that limit viral replication, while other cytokines,

including IL-6, TNF-a and IL-1b, recruit immune cells

to the site of infection and elicit inflammation. NF-kB-

dependent and IRF-dependent cytokines are transcrip-

tionally regulated, whereas inflammasome-dependent

IL-1b secretion is regulated both transcriptionally and

post-transcriptionally (Figure 1). Importantly, many

viruses can suppress these innate responses at the ‘sen-

sing’ and/or transcriptional level upon replication within

infected cells [14].

Immune recognition of viruses by
transmembrane innate receptors
Transmembrane innate receptors, such as TLRs, recog-

nize extracellular viruses, and their activation does not
www.sciencedirect.com
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Figure 1
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Innate immune receptors involved in virus recognition. NLR and AIM2 pathways: NLRP3 is activated by a wide variety of stimuli, including RNA

viruses. Foreign cytoplasmic dsDNA is also detected by AIM2 via the HIN200 domain. Their activation induces the recruitment of the adaptor

protein, ASC, via the pyrin domain. Procaspase-1 is also recruited to ASC via the CARD domain (inflammasome formation). This interaction

leads to the auto-cleavage of caspase-1 and results in the activation of caspase-1, which cleaves pro-IL-1b. NOD2 is involved in the recognition

of ssRNA viruses. NOD2 activates IPS-1, a mitochondrial membrane-anchored protein, through the NBD and LRR domains, which leads to IRF3

activation. RLR pathway: RIG-I is essential for IFN responses to several ssRNA viruses such as Orthomyxoviridae and Paramyxoviridae.

However, MDA5 is necessary for responses to a different set of viruses, such as Picornaviridae. LGP2 can act as a positive regulator, making

viral RNP complexes more accessible to RIG-I and MDA5. Some viral DNAs are transcribed into 50 tri-phosphate RNA (the RIG-I ligand) by

cytosolic RNA polymerase III (pol III). RIG-I and MDA5 signal via the adaptor protein, IPS-1, which leads to type I IFN production through the

TBK1-IRF3-dependent pathway, and proinflammatory cytokine production through NF-kB translocation. RIG-I can activate the inflammasome by

interacting with the CARD domains of RIG-I and ASC, and produce IL-1b. Cytosolic DNA sensor pathways: extra-chromosomal histone H2B

binds DNA virus-like HPV through its a-helical region and interacts with IPS-1 via association with the adaptor protein CIAO. IFI16 binds DNA

viruses via the HIN200 domains. They then activate the STING-TBK1-IRF3-dependent signaling pathway, resulting in the production of type I

IFN. DAI detects DNA viruses and induces TBK1-IRF3-dependent type I IFN production. LRRFIP1 detects both bacterial DNA and viral RNA from

VSV and induces type I IFN production via the b-catenin-IRF3 transactivator pathway. The DExD/H box helicase, DHX9/36, detects CpG-ODNs

and DNA viruses such as HSV, leading to MyD88-IRF7-dependent type I IFN production. TLR pathway: some RNA viruses are detected by cell

surface TLR2 and TLR4, which induce MyD88-dependent NF-kB activation. TLR4 is also recruited to the endosome, leading to TRIF-dependent

type I IFN production. TLR3 and TLR7/8 recognize dsRNA and ssRNA, respectively, from RNA viruses. TLR3 induces TRIF-TBK1-dependent

type I IFN production, whereas TLR7/8 induces NF-kB and IRF7 activation via MyD88. TLR9 detects CpG-ODNs and DNAs derived from DNA

viruses, leading to NF-kB and IRF7 activation via MyD88. Some DNA viruses are also recognized by TLR2 in the endosome, which then induces

IRF3/7-dependent type I IFN production.
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necessarily require infection of the receptor-expressing

cells. Based on cellular localization, TLRs can be grouped

in two types: cell surface TLRs (TLR1,2,4,5,6) and

endosomal TLRs (TLR3,7,8,9) [1]. Cell surface TLRs

recognize bacterial/fungal cell wall components. How-

ever, many reports show that some viral proteins are also

recognized by cell surface TLR2 and TLR4 [15,16]. A

recent report by Barbalat et al. identified another inter-

esting example of viral recognition by cell surface TLRs.

Mouse cytomegalovirus and vaccinia virus (both dsDNA

viruses) were recognized via TLR2. This led to the

production of IFN-b, which was not observed upon

stimulation with Pam3SK4 (a well-known bacterial

TLR2 agonist) [17��]. Interestingly, this TLR2-mediated

IFN-b production was restricted in Ly6C(hi) inflamma-

tory monocytes, and was dependent on TLR2 recruit-

ment from the cell surface to the endosome [17��].
However, the exact molecular mechanism(s) underlying

virus recognition by cell surface TLRs is the subject of

future research. The endosomal TLRs, TLR3, TLR7/8,

and TLR9 recognize virus-derived dsRNA, ssRNA, and

DNA, respectively [18]. Many viruses are recognized by

these endosomal TLRs (Figure 1). TLR3 signaling is

mediated by the adaptor molecule TRIF, which induces

IRF3 phosphorylation leading to IFN-b production.

TLR7/8/9 signaling is mediated by another adaptor

molecule, MyD88 (an adaptor commonly used by

other TLRs, except TLR3) leading to IRF7-mediated

IFN-a production. Importantly, expression of these

endosomal TLRs is restricted to certain types of dendritic

cells (DCs). TLR3 is preferentially expressed by

CD8a(+)DCs, and TLR7/9 is preferentially expressed

by plasmacytoid DCs (pDCs). Overall, the recognition of

the presence of viruses seems to be mediated by limited

types of host cells that express these transmembrane

innate immune receptors.

Immune recognition of viruses by cytosolic
innate receptors
In contrast to transmembrane receptors, cytosolic innate

receptors are expressed by all host cells. RLRs and NLRs

mainly recognize viral RNAs, and the recently identified

ALRs (and other cytosolic DNA sensors) detect viral

DNA in the cytosol of infected cells. This cytosolic

receptor-mediated virus recognition is critically important

for the host innate immune responses to contain viral

replication within the infected cells before the adaptive

immune responses are fully developed. In contrast, the

contribution of this form of cytosolic virus recognition to

adaptive responses is varied and more controversial, as

discussed later in this review.

RLRs comprise retinoic acid inducible gene-I (RIG-I),

melanoma differentiation associated gene 5 (MDA5), and

laboratory of genetics and physiology 2 (LGP2). Both

RIG-I and MDA5 recognize viral RNAs within the cyto-

plasm of infected cells. However, the exact molecular
Current Opinion in Virology 2011, 1:226–232 
signatures of the RIG-I and MDA5 ligands are still not

fully understood [19–22]. Owing to the lack of a caspase

recruitment domain (CARD), which is important for

interactions with IPS-1, LGP2 was assumed to function

as a negative regulator of RIG-I and MDA5. However, a

recent study suggests that LGP2 positively regulates

RIG-I and MDA5 signaling, possibly by modifying the

viral RNA structure before detection by these two recep-

tors [23]. Virus recognition by RIG-I and MDA5 is

mediated by a single adaptor molecule, IPS-1 (or MAVS),

and leads to NF-kB and IRF3/IRF7 activation. Interest-

ingly, a recent report demonstrated that RIG-I can

directly activate ASC in an NLRP3-independent manner,

leading to caspase-1-dependent IL-1b production during

VSV (ssRNA virus) infection [24��].

NLRs comprise a large number of family member proteins

that contain a conserved NOD motif [25], and can be

classified into two groups. Activation of Nod1 and Nod2

leads to the activation of NF-kB and IRF. Although Nod2

was initially characterized as a cytosolic sensor for the

bacterial cell wall component, muramyl dipeptide, which

induces NF-kB activation, a recent report suggests that

Nod2 also functions as a virus sensor [26��] and activates a

non-classical NLR signaling pathway [27]. Sabbah et al.
showed that Nod2 can directly sense cytosolic ssRNA from

RSV and influenza virus, leading to MAVS(IPS-1)-IRF3-

mediated IFN-b responses [26��]. Activation of NLRs,

such as NLRP1, NLRP3, and NLRC4, leads to inflamma-

some formation, which results in caspase-1-mediated IL-

1b and IL-18 secretion (Figure 1). The NLRP3 inflamma-

some is one of the best characterized inflammasomes, and

is activated by bacterial toxins, LPS, and viral RNAs, as

well as uric acid and alum [11�,28]. Interestingly, it appears

that many RLRs and NLRs sense virus infections by

detecting viral genomic, or replication-intermediate,

RNA. This might indicate that the presence of viral nucleic

acids provides the stronger proof of active viral infection,

rather than general danger signals.

Cytosolic DNA sensors
AIM2 and IFI16 are both recently identified cytosolic

DNA sensors and are involved in DNA-dependent

inflammasome activation and IFN-b production, respect-

ively [5,29–34]. Because both proteins contain a PYHIN

domain [35–37], it has been proposed that they be

referred to as ALRs [5]. However, several other molecules

are also known to be involved in DNA sensing within the

cytosol. DAI (ZBP-1) is the first reported DNA sensor

molecule that triggers TBK1-IRF3-dependent IFN-b

induction in vitro [38]; however, gene knockout mice

do not show the same phenotype, suggesting the presence

of redundant DNA sensor mechanisms [39]. Lrrfip1

recognizes cytosolic dsDNA (and dsRNA), subsequently

interacting with b-catenin and enhancing IRF3-mediated

IFN-b expression [40]. DHX36 and DHX9, present in

human pDC, are cytosolic CpG-A and CpG-B binding
www.sciencedirect.com
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proteins, respectively. These proteins mediate the

MyD88/IRF7-dependent production of IFN-a [41].

AT-rich DNA is also recognized indirectly by RNA

polymerase III. AT-rich DNA is transcribed into 5-tri-

phosphate dsRNA, which is then recognized by the RIG-I

pathway [42,43]. The cytosolic histone, H2B, is also

involved in DNA sensing. The dsDNA/H2B complex

activates IPS-1 via CIAO (an adaptor molecule that links

histone H2B and IPS-1) in human cell lines leading to

IFN-b expression. However, this H2B-mediated

dsDNA-dependent IFN-b production is not observed

in mice, most likely because of the lack of the interaction

between mouse CIAO and mouse IPS-1 [44].

Signaling via which innate immune receptors
leads to adaptive immune responses: TLRs,
RLRs, NLRs, or others?
Activation of the innate immune system is critical for

establishing adaptive immune responses. This is simply

demonstrated by the fact that immunization with a highly

purified recombinant protein is usually unsuccessful

owing to the lack of innate responses [45]. On the other

hand, viral infections are usually sensed by multiple

innate receptors. The live attenuated yellow fever

vaccine 17D has been shown to activate multiple TLRs,

resulted in CD8T and a mixed Th1/Th2 immune

responses [46,47]. In the case of influenza virus, infection

can be detected by three different receptors: TLR7, RIG-

I, and NLRP3 [48�,49]. However, conflicting results have

been reported, particularly in terms of the adaptive

immune responses examined in these receptors/adaptors

deficient mice (Table 1).

The involvement of TLR7/MyD88 has been examined

by four independent studies [50–53]. It is very difficult to

generalize the results, which range from almost nothing to
Table 1

Adaptive immune responses in mice deficient in innate immune recep

Virus TLRs(Myd88) deficiency 

IFN-l, TNFa/IL-6 

Lopez et al. [50] A/PR8 CD4(IFNg)!, CD4(IL-4)T,

CD8!, Ab!
Heer et al. [51] A/PR8 CD4!, CD8!, Ab(lgG2a)# 

Koyama et al. [52] A/PR8, A/NC CD4(IFNg)#, CD8!, Ab(lgG2a)#
Seo et al. [53] A/PR8 CD4(Th1)#, CD4(Th2)",

CD8!, Ab!
Ichinohe et al. [58] A/PR8 Not examined 

Allen et al. [59] A/PR8 Not examined 

Thomas et al. [60] A/PR8 Not examined 

Koyama et al. [48�] A/NC Not examined 

Inactivated

WV(A/NC)

CD4!, Ab# 

Geeraedts et al. [54�] Inactivated

WV(H5N1)

CD4#, Ab# 

www.sciencedirect.com 
identifying a prominent phenotype, except that all of the

studies consistently agreed that CD8T responses were

not affected by the absence of the TLR7/MyD88 path-

way. However, two independent studies consistently

demonstrated that, in contrast to live virus, the immuno-

genicity of a chemically killed (inactivated) whole virus

was completely dependent on TLR7/MyD88 signaling

[48�,54�].

The RIG-I/IPS-1 pathway was also examined in two

independent studies [52,53]. They concluded that

although RIG-I/IPS-1 signaling induces almost overlap-

ping cytokine responses to those induced by TLR7/

MyD88 (Figure 1), IPS-1-deficiency had no substantial

effect upon adaptive responses to influenza virus infec-

tion [52,53]. This may reflect differential cellular expres-

sion of these receptors. RIG-I is ubiquitously expressed

by most cells, whereas TLR7 is preferentially expressed

by pDCs. It may also reflect the fact that RIG-I sensing

requires viral replication within the cell, whereas TLR7

recognizes viruses in the endosome, which is not de-

pendent upon virus infection (Figure 1). Differential

regulation of adaptive immune responses by TLRs and

RLRs has also been reported in another virus infection

system. Jung et al. demonstrated that during LCMV in-

fection, CD8T responses in MyD88-deficient mice were

significantly reduced, whereas IPS-1-deficient mice

showed comparable CD8T responses to those of wild-

type mice [55].

NLRP3 can be triggered by viral RNA [56] and/or ionic

perturbation caused by the influenza M2 protein [57].

NLRP3 triggers ASC-mediated NLRP3 inflammasome

formation, leading to caspase-1-dependent IL-1b and IL-

18 secretion. Inflammasome involvement in influenza

virus infection has been studied by four independent
tors/adaptors against influenza virus infection and vaccination.

RLRs(IPS-1) deficiency NLRs(NLRP3, ASC,

caspase-1) deficiency

Inflammasome (IL-1/IL-18)

Not examined Not examined

Not examined Not examined

 CD4(IFNg)!, CD8!, Ab! Not examined

CD4(Th1)!, CD8!, Ab! Not examined

Not examined CD4(IFNg)# CD8#, Ab(IgG, IgA)#
Not examined Intact adaptive responses

(CD8!, Ab!)

Not examined CD8!, Ab!
Not examined CD4(IFNg)!, CD8!, Ab(lgG1)#
CD4!, Ab! CD4!, Ab!

Not examined Not examined

Current Opinion in Virology 2011, 1:226–232
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groups. Ichinohe et al. demonstrated that NLRP3-inde-

pendent, but ASC-dependent, inflammasome responses

were important for both CD4T and CD8T responses, as

well as IgA and IgG responses [58] (it is noteworthy that

Poeck et al. also reported NLRP3-independent, but RIG-

I and ASC-dependent, inflammasome activation by VSV

[24��]). In contrast, Allen et al. and Thomas et al. showed

that NLRP3 inflammasome responses were not involved

in adaptive responses, but play a more important role in

the innate phase of host defense and in tissue healing

[59,60]. We also examined ASC-deficient mice and found

that inflammasome activation had almost no impact on

the adaptive response to live influenza virus infection

[48�]. At present, the reason for these contradictory results

is not clear [11�,61].

Viral subversion of innate immune responses
may affect adaptive immune responses
These controversies may be explained by differences in

the types of virus used; especially the different subver-

sion mechanisms used by the viruses. Influenza virus (and

other viruses) possesses an immune evasion protein that

modulates the innate immune signaling cascades of the

host [14]. Even though most studies used a mouse-

adapted PR8 virus, Heynisch et al. reported that two

variants of A/PuertoRico/8/34 show very different acti-

vation patterns for cellular signaling molecules in MDCK

cells [62]. This most likely reflects the fact that these

variant viruses modulate cytosolic signaling systems in

different ways. Influenza NS-1 is the most well-charac-

terized of the proteins that subvert RIG-I mediated IFN-

a/b responses at multiple steps [63]. A recent report

suggests that the inflammasome is also an evasion target

of a herpes virus [64]. Intriguingly, no direct viral mech-

anism that antagonizes TLR signaling has been described

for influenza A virus [63]. Taken together, these data

suggest that the same PR8 virus may induce very differ-

ent host immune responses. Furthermore, they may also

suggest that subverting the infection-dependent cytosolic

innate system may be easier than subverting the infec-

tion-independent TLR system. In line with this hypoth-

esis, once the virus is fixed with formalin (and killed), the

host immune response is consistently TLR7/MyD88-de-

pendent [48�,54�].

Conclusions
The existence of diverse innate immune receptors may

reflect a redundancy that ensures sensitive detection of

viruses in a variety of tissue and cell types, and the

subsequent induction of host defense mechanisms. TLRs

can detect extracellular viruses (either live or dead), and

do not require viral infection of receptor-expressing cells.

By contrast, detection by cytosolic receptors requires viral

infection and replication, which can be easier evasion

targets for many viruses. The innate immune response

plays two roles in host defense: (1) it limits (or at least

controls) viral replication during initial infection; and (2)
Current Opinion in Virology 2011, 1:226–232 
it induces adaptive immune responses responsible for

viral clearance and maintenance (memory). However, it

is still not clear to what extent each innate immune

receptor contributes to the adaptive immune responses.

Owing to sophisticated immune evasion mechanisms,

infection by live viruses may not provide a clear answer.

However, immunization with an inactivated whole virion

influenza vaccine clearly demonstrates that TLR-

mediated innate signaling alone is sufficient to induce

adaptive immune responses. Currently, it is difficult to

examine the individual contribution of each RLR and

NLR to the adaptive immune response because of the

lack of selective activators. Recently, Kasturi et al.
demonstrated that synthetic nanoparticle based vaccines

composed of multiple TLR ligands induced persistent

antibody and CD8T responses than single TLR activat-

ing vaccine [65]. It suggests that activations of multiple

innate immune receptors may be required for long lasting

memory responses but not necessarily required for

mounting temporal effector responses. Further studies

will clarify the more detailed coordination between

innate and adaptive immune responses, and provide a

more rational way of vaccine design.
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