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Abstract
Large-scale COVID-19 vaccinations are currently underway in many countries in response to the COVID-19 pandemic.
Here, we report, besides generation of neutralizing antibodies, consistent alterations in hemoglobin A1c, serum
sodium and potassium levels, coagulation profiles, and renal functions in healthy volunteers after vaccination with an
inactivated SARS-CoV-2 vaccine. Similar changes had also been reported in COVID-19 patients, suggesting that
vaccination mimicked an infection. Single-cell mRNA sequencing (scRNA-seq) of peripheral blood mononuclear cells
(PBMCs) before and 28 days after the first inoculation also revealed consistent alterations in gene expression of many
different immune cell types. Reduction of CD8+ T cells and increase in classic monocyte contents were exemplary.
Moreover, scRNA-seq revealed increased NF-κB signaling and reduced type I interferon responses, which were
confirmed by biological assays and also had been reported to occur after SARS-CoV-2 infection with aggravating
symptoms. Altogether, our study recommends additional caution when vaccinating people with pre-existing clinical
conditions, including diabetes, electrolyte imbalances, renal dysfunction, and coagulation disorders.

Introduction
The COVID-19 pandemic has profoundly affected

humanity. The development of COVID-19 vaccines in
various forms has been underway in an unprecedented and
accelerated manner. Despite some uncertainties regarding
potential consequences, large-scale vaccinations are taking
place in many countries. There have been different
COVID-19 vaccines developed, including inactivated viral

particles, mRNA vaccines, adenoviral-based vaccines, and
etc.1–5. Historically, vaccine research has been focused on
whether or not vaccination could generate neutralizing
antibodies to protect against viral infections, whereas
short-term and long-term influences of the various newly
developed vaccines to human pathophysiology and other
perspectives of the human immune system have not been
fully investigated.
With the development of large-scale single-cell mRNA

sequencing (scRNA-seq) technology, systematic investigation
of people’s immune system function with precision became
possible, primarily through scRNA-seq of peripheral blood
mononuclear cells (PBMCs). During the COVID-19 pan-
demic, a large body of studies using scRNA-seq of PBMCs
had revealed detailed changes in gene expression in different
immune cell subtypes including different types of T and B
cells, NK cells, monocytes, dendritic cells, etc. during and
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after infection, results from which indicated greatly reduced
CD4+ and CD8+ T-cell numbers and T-cell exhaustion
upon SARS-CoV-2 infection. Reduced peripheral mucosal-
associated invariable T (MAIT) cell numbers and their
migration in and out of the lung had also been observed.
Highly activated inflammatory immune responses, including
Interferon-gamma (IFN-γ), interleukin-6 (IL-6), and NF-κB
responses, had been reported in COVID-19 patients6–12.
Many studies had revealed immune state differences between
people with severe versus mild symptoms, in that strong
type I interferon (IFN-α/β) responses were beneficial after
COVID-19 infection and attenuated IFN-α/β responses were
associated with the development of severe symptoms13. In
contrast, stronger NF-κB inflammatory responses were
associated with more severe symptoms14. In addition,
increased γδ-T cell and reduced neutrophil contents were
reported to be associated with milder symptoms15.
Upon SARS-CoV-2 infections, many people developed

various degrees of respiratory syndromes, and some with
gastrointestinal conditions. It had been reported that
blood coagulation disorders, vasculature issues, electro-
lytes imbalances, renal disorders, metabolic disorders, etc.
were major clinical complications with COVID-1916,17.
The manner in which vaccination would mimic an
infection has not been fully evaluated. In this study, we
enrolled healthy volunteers who were to be vaccinated
with an inactivated SARS-CoV-2 vaccine (Vero Cell)3, to
participate in antibody and neutralizing antibody testings,
as well as detailed clinical laboratory measurements
before and at different times after vaccination (two-dose
regimens with slightly different schedules were applied).
To our surprise, we observed quite consistent pathophy-
siological changes regarding electrolyte contents, coagu-
lation profiles, renal function as well as cholesterol and
glucose metabolic-related features, as if these people had
experienced an infection with SARS-CoV-2. In addition,
PBMCs scRNA-seq results also indicated consistent
reductions in CD8+ T cells and increases in monocyte
contents, as well as enhanced NF-κB inflammatory sig-
naling, which also mimicked responses after infection.
Surprisingly, type I interferon responses, which had been
linked to reduced damages after SARS-CoV-2 infection
and milder symptoms, appeared to be reduced after vac-
cination, at least by 28 days post the 1st inoculation. This
might suggest that in the short-term (1 month) after
vaccination, a person’s immune system is in a non-
privileged state, and may require more protection.

Results
Longitudinal follow-up of anti-SARS-CoV-2 antibody and
neutralizing antibody productions after inoculation of
inactivated SARS-CoV-2 vaccine
A total of 11 healthy adult volunteers of both sexes, aged

24–47 years, with a BMI of 21.5–30.0 kg/m², were

enrolled in this study (Fig. 1a and Supplementary Tables
S1 and S2). SARS-CoV-2 vaccine (Vero Cell), inactivated
(Beijing Institute of Biological Products Co. Ltd), was
administered intramuscularly into the deltoid. Volunteers
were divided into two cohorts; five participants (cohort A)
were vaccinated with a full dose (4 μg) of inactivated
SARS-CoV-2 Vaccine (Vero Cell) on days 1 and 14, and
six participants (cohort B) received a full dose of the
vaccine on days 1 and 28 (Fig. 1a). One of the volunteers
in group B was tested positive for anti-SARS-CoV-2 IgM
and IgG right before vaccination, suggestive of potential
prior infections. However, there was no record of previous
positivity by nucleic acid (NA) diagnosis for COVID-19
(marked green in Fig. 1a). For all follow-up examinations,
data from this individual was marked green to track any
possible influences from potential prior infections.
Adverse events were monitored daily during the first

7 days after each inoculation and then self-recorded by the
participants on diary cards in the following weeks. Overall,
adverse reactions were mild (grades 1 or 2) and transient
(Supplementary Table S3). Blood samples were collected on
days 0, 7, 14, 28, 42, 56, and 90, and urine samples were
collected on days 0, 14, 28, 42, and 90. Plasma samples were
subjected to anti-SARS-CoV-2 IgM/IgG testing using
multiple diagnostic kits, results from the most sensitive kit
were used for quantification (Fig. 1b, c). Testing results
from cohort A demonstrated that prior to the 2nd inocu-
lation 0% of the participants developed anti-SARS-CoV-2
IgG, but by day 28, which was 2 weeks post the 2nd
inoculation, 100% of the participants were tested positive
(Fig. 1b). Overall, IgM showed up earlier than IgG, which
was expected. IgG and IgM positivity decreased by day 42
and remained at relatively low levels by day 90 in cohort A.
For cohort B, no one developed IgG until after 2nd
inoculation. Yet by day 42, IgG positivity reached 100% (Fig.
1c) and sustained until day 56, suggesting that the vacci-
nation protocol for cohort B was more efficacious. By day
90, IgG positivity also reduced to 50%, indicating antibody
production did not sustain for a long time. We further
carried out tests for SARS-CoV-2 neutralizing antibodies18

(Fig. 1d), and results also indicated that two inoculations
28 days apart (cohort B) resulted in higher protective
antibody titers as compared to two inoculations with
14 days apart (cohort A). On the other hand, it appeared
that anti-SARS-CoV-2 neutralizing antibody titers were
overall lower than those in COVID-19 convalescent indi-
viduals as reported before3 (Fig. 1d). By 90 days, neutralizing
antibody titers dramatically decreased in all volunteers (Fig.
1d). Interestingly, the individual who was antibody positive
prior to vaccination was not more prone to generating
neutralizing antibodies as compared to the rest of the par-
ticipants, suggesting that prior potential infection might not
have occurred or may not generate long-lasting protection
in the perspective of neutralizing antibody production.
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Alterations in clinical laboratory measurements after
vaccination
Clinical laboratory routine tests including infection-

related indices, hematologic parameters, coagulation
function, blood glucose, serum lipids, cardiac function-
related enzymes, electrolytes, liver, and renal function-
related biomarkers, were measured to reveal safety fea-
tures of the vaccine (Fig. 2a and Supplementary Tables S4
and S5). White blood cell count was significantly, yet only
slightly, increased after vaccination on day 7. No differ-
ences were detectable at the following time points (Fig.

2b). To our surprise, quite consistent increases in HbA1c
levels were observed in healthy volunteers, regardless of
whether they belonged to cohort A or B. By day 28 post
the 1st inoculation, three out of 11 individuals reached the
prediabetic range (Fig. 2c). By days 42 and 90, medium
HbA1c levels appeared to revert back, yet were still sig-
nificantly higher than those before vaccination. Previous
work has demonstrated that diabetic patients with
uncontrolled blood glucose levels are more prone to
develop severe forms of COVID-1919. High blood glucose
levels/glycolysis had been shown to promote SARS-CoV-
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Fig. 1 Schematic workflow and SARS-CoV-2 antibody/neutralizing antibody detection after vaccination. a Schematic description of vaccine
inoculation strategies, blood sample collections, and measurements. b, c Antibody positivity changes (percent positive/total) over time in cohorts A
and B. Volunteers in cohort A were inoculated on days 1 and 14, and in cohort B, on days 1 and 28. Red line represents IgM changes, and black, IgG. d
Neutralizing antibody titer changes in plasma of volunteers in cohorts A and B after vaccination, as well as those from convalescent individuals tested.
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2 replication in human monocytes via the production of
mitochondrial reactive oxygen species and activation of
HIF1A20, therefore presenting a disadvantageous feature.
Serum potassium levels decreased significantly by days

28, 42, and 90 post the 1st inoculation, with one sample
below the lower normal limit at day 42 (Fig. 2d, left panel).
Similarly, serum sodium levels also decreased following
vaccination (Fig. 2d, right panel), indicative of vaccine
influences on electrolyte balance. Again, electrolyte
imbalance has also been linked to COVID-1921. Coagu-
lopathy is another COVID-19-induced clinical condi-
tion22. We found that coagulation profiles changed
significantly after vaccination, in the short-term (7 days)
after the 1st inoculation, coagulation profiles were leaning
toward shorter Prothrombin Time (PT), whereas the
long-term (28 and 42 days) effect was toward activated
partial thromboplastin time (APTT) and PT prolongation
(Fig. 2e). By day 90, the profiles returned back to those
before vaccination (Fig. 2e). Moreover, we found elevated
blood cholesterol levels at days 7, 28 after the 1st inocu-
lation, and elevated total bile acid levels were also detec-
ted at day 7 (Fig. 2f, g). Renal dysfunction is another
clinical condition linked to COVID-19, and by 28, 42, and
90 days after the first inoculation, serum creatinine levels
were significantly higher than those before vaccination,
resulting in reduced eGFR (Fig. 2h). Most of these clinical
features have been reported to be associated with the
development of severe symptoms in COVID-19 patients
(Supplementary Table S6). Overall, there were no statis-
tically significant differences between cohorts A and B,
except for only a few indices (Supplementary Table S7),
therefore data from two cohorts were pooled for clinical
data presentation and subsequent analyses.

scRNA-seq revealed dramatic alterations in gene
expression of almost all immune cells after vaccination
To explore the immunological features of healthy

volunteers following vaccination, we performed droplet-
based scRNA-seq (10× Genomics) to study transcriptomic
profiles of PBMCs from volunteers belonging to either
cohort A or B, before and 28 days after vaccination (Fig.
3a and Supplementary Fig. S1a). After preprocessing and
low-quality cell elimination (see “Materials and meth-
ods”), we obtained 188,886 cells from all PBMC samples,
among which 86,685 cells were from cohort A and
102,201 cells from cohort B. All qualified cells were
integrated into the unified dataset and subjected to
downstream analyses.
Using graph-based clustering of uniform manifold

approximation and projection (UMAP)23, Single-cell
Recognition of cell types (SingleR) algorithm24, and
manual annotation based on canonical gene markers, we
identified 22 cell types or subtypes and performed dif-
ferential expression analysis amongst all cell types (Fig. 3b

and Supplementary Table S8). Cells (cell transcriptomes)
from samples before (blue) and after (orange) vaccination
were distinctly separated in the UMAP representation for
both cohorts, which meant immunological features had
changed quite drastically in almost all immune cell types
detected, and consistently in all volunteers (Fig. 3c).
Among the 11 pairs (before and after) of PBMC samples,
10 pairs were sequenced together and one pair was
sequenced separately in a different batch. UMAP dis-
tributions were drastically similar regardless of the dif-
ferent batches, suggesting minimal sequencing batch
effects (Supplementary Fig. S1b). Two independent bat-
ches of sequencing revealed similar changes before and
after vaccination, suggesting the changes are real, whereas
using the batch effect correction method (Harmony25)
(Supplementary Fig. S1c–e) would result in over filtration
and elimination of the real changes caused by vaccination.
Moreover, sample clustering based on the Pearson Cor-
relation coefficient of the transcriptomes indicated that
samples from the two cohorts (A and B) intermingled well
with each other both before and after vaccination,
whereas vaccination-induced changes could clearly be
observed (Fig. 3d). Therefore, to increase the statistical
power, we combined the two cohorts for subsequent
analyses.
To reveal differences in cell-type compositions before

and after vaccination, we calculated relative percentages
of all cell types in PBMCs of each individual on the basis
of scRNA-seq data (Fig. 3e). We observed decreases in
contents of CD4+ regulatory T cells (CD4.Treg), CD8+

T cells (CD8.T), and proliferating CD8+ cells (CD8.
Tprolif) after vaccination (Fig. 3e). Decreases in γδ-T cell
(gd.T.Vd2) contents were also significant (Fig. 3e). In
contrast, vaccination increased CD14+ classical monocyte
(Mono.C) contents (Fig. 3e), consistent with clinical
laboratory measurements (Fig. 3f). The overall lympho-
cyte contents, which included all CD4+ T cells, all CD8+

T cells, B cells, and NK cells, did not change significantly
before and after vaccination, which was also confirmed by
clinical laboratory measurements (Fig. 3g). We collected a
published dataset from 196 COVID-19-infected patients
and controls7, and analyzed our data together with that
dataset. The result indicated that vaccination-induced
changes in cell contents of all five different immune cell
subtypes also changed in the same directions in COVID-
19 patients as compared to controls, except for pro-
liferating CD8+ T cells (Supplementary Fig. S2).
To study detailed gene expression changes induced by

vaccination, we merged individual samples into pseudo-
bulk samples and used paired sample test to identify dif-
ferentially expressed genes (DEGs) (Fig. 3h and Supple-
mentary Table S9). Significantly upregulated genes were
involved in “TNFα signaling via NF-κB”, “inflammatory
responses”, and “cytokine-cytokine receptor interaction”,
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“IL6-JAK STAT3 signaling”, “coagulation”, “hypoxia”,
which had been reported for COVID-19, while cell cycle-
related pathways were downregulated (Fig. 3i). These
results supported the notion that vaccination mimicked
an infection6–12.

Featured immune cell subtype-specific gene expression
changes mirrored clinical laboratory alterations
Prior to the elucidation of the functional heterogeneity

and cell-type-specific gene expression changes between
samples before and after vaccination, we grouped cells
into 11 major types: (1) naive-state CD4+ T cells, (2)
naive-state CD8+ T cells, (3) CD4+ helper T cells
(including CD4.T, CD4.Treg, and CD4.Tprolif), (4) CD8+

cytotoxic T cells (including CD8.T, CD8B.T, and CD8.
Tprolif), (5) MAIT, (6) γδ-T cells, (7) NK cells (including
NK, NK proliferative), (8) B/plasmablast cells (including B
cells and plasmablasts), (9) monocytes/dendritic cells
(including classical mono, intermediate mono, non-
classical mono, myeloid DC1, myeloid DC2, and plas-
macytoid DC), (10) CD4+ terminal effector T cells, and
(11) CD8+ terminal effector T cells. Following eleven
major cell-type categorizations, we performed sample-
level comparisons by aggregating gene expression across
major cell types within each donor and then performed
differential expression analysis using muscat26. We iden-
tified diferentially expressed genes (DEGs) among all
major cell types (Fig. 4a and Supplementary Table S10)
and conducted gene functional analysis (Fig. 4b). Echoing
the clinical measurement results, genes related to “cho-
lesterol homeostasis”, “coagulation”, and “inflammatory
response” (CXCL8, CD14, IL6, and TNFRSF1B), “TNFα
signaling via NF-κB” (NFKB1, NFKB2, NFKBIE,
TNFAIP3, and TNFSF9) and “hypoxia” (HIF1A) were
upregulated. In addition, “TGFβ signaling”, “IL2-
STAT5 signaling” (IFNGR1, MAPKAPK2, and CASP3),
and “IL6-JAK-STAT3 signaling”-related genes were also
upregulated (Fig. 4c). To visualize which cell types were
enriched for those signatures, we performed gene module
scoring and displayed the scores on UMAP coordinates as

well as grouped box plots (Fig. 4c and Supplementary
Table S11). Interestingly, “inflammatory response” genes
were highly expressed in monocytes and after vaccination
further increased (Fig. 4c), suggesting monocytes were
one of the major cell types participating in inflammatory
responses after vaccination. In contrast, genes related to
“glycolysis”, “bile acid metabolism”, and “type I interferon
(IFN-α/β) response” were downregulated, consistent with
our clinical data and the pathophysiology of COVID-1913

(Fig. 4d).

Most common changes in multiple immune cell subtypes
revealed increases in NF-κB signaling and decreases in IFN-
α/β responses
Given that clusters of genes changed their expression

dramatically among all major cell types, we hypothesized
that there might be some transcription factors serving as
master regulators leading to immunological alterations.
To solve the computational challenges associated with
such a big dataset, we used the MetaCell algorithm27 to
aggregate homogeneous groups of cells into metacells,
and finally produced 1857 metacells (893 before and 964
after vaccination) to represent the whole structure of the
scRNA-seq data (Fig. 5a). Those metacells were then
applied to “single-cell regulatory network inference and
clustering (SCENIC)”28,29 to construct the gene regulatory
networks. The workflow produced a list of 157 “regulons”,
which included transcription factors and their direct tar-
gets. Regulon activities were scored using AUCell to
access averaged enrichment of all genes belonging to each
regulon in each metacell, as well as averaged regulon gene
enrichment in all 893 metacells before vaccination, and
964 metacells after vaccination. Top-ranked (most active)
eight regulons upregulated and eight regulons down-
regulated after vaccination were identified (Fig. 5b). We
selected 3+ 3 typical regulons to construct a regulatory
network as presented in Fig. 5c (Supplementary Table
S12). The network showed two distinct groups, one is
consisted of IRF2, STAT1 and STAT2, which were
downregulated after vaccination, and the other, contained

(see figure on previous page)
Fig. 3 Changes in peripheral immune cell type and subtype compositions as well as gene expression before and 28 days after the 1st
inoculation. a Cell-type UMAP representation of all merged samples. In total, 22 cell types were identified by cell-type-specific gene expression
signatures. In total, 188,886 cells were depicted. b Dot plot for cell-type-specific signature genes. Color scale indicated expression levels and point size
represented the percentage of cells per cluster/subtype expressing the corresponding gene. c UMAP representation representing cells before (blue)
and after (orange) vaccination. d Heatmap of correlation amongst pseudo-bulk samples. e Percentages of specific immune cell subtypes in total
PBMCs from each individual before and after vaccination. Box plot depicted sample distribution. Blue boxes represented samples before, and orange,
after vaccination. P values were based on the Wilcoxon test for comparisons between groups before and after vaccination. f Box plots showed
changes before and after vaccination in monocyte content from scRNA-seq data (left panel) and clinical laboratory measures (right panel).
g Box plots showed changes in CD4+, CD8+ T-cell contents as well as lymphocyte (T+ B+ NK) contents before and after vaccination from scRNA-
seq data (left 3 panels) and laboratory tests (right panel). h DEGs identified by pseudo-bulk samples before and after vaccination. i Overrepresentation
analysis of HALLMARK gene sets from MSigDB demonstrating different immunological features before and after vaccination.
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RELB, NFKB2, and HIF1A, which were upregulated after
inoculation. The GO terms of the upregulated network
are predominantly related to lymphocyte differentiation,
activation, and “Germinal Center Formation”, which
suggested that T cells and B cells were activated after
vaccination. In addition, NF-κB signaling was also ele-
vated after vaccination. The downregulated network was
enriched for many interferons-related pathways and
Cytokine Secretion (Fig. 5d and Supplementary Table
S13). This suggested that vaccination might inhibit
interferon responses in the peripheral immune system, by
reducing the activities of regulons STAT1, STAT2, and
IRF2, which were thought to be master transcription
factors driving type I and III interferon signaling30,31.
To confirm vaccination-induced inhibition of interferon

responses revealed by scRNA-seq, we stimulated PBMCs
from vaccinated individuals before and 28 days after
vaccination with IFN-α/β. After 16 h of culturing and 12 h
of stimulation, we used RT-qPCR to measure the relative
expression of master regulators IRF2, IRF7, and STAT2.
STAT2 and IRF7 were significantly downregulated after
vaccination, yet IRF2 showed a trend of downregulation
(Fig. 5e, f). The regulon analyses indicated that the states
of the peripheral immune system after vaccination had
reduced type I interferon responses, indicative of atte-
nuated general antiviral abilities at least 28 days after the
first inoculation.

Vaccination-induced inflammatory responses in
monocytes
Recent reports have described conserved host immune

response signatures to respiratory viral infections, namely
the Meta-Virus Signature (MVS), which is also conserved
in SARS-CoV-2 infection32,33. Higher MVS scores are
associated with infection32,33. In all, 380 (158 positively-
and 222 negatively contributed to MVS scores) out of 396
(161 positively- and 235 negatively contributed) genes
selected for MVS measurement were detected in our
dataset. To investigate host immune responses after vac-
cination with inactivated SARS-CoV-2, we separated the
positive and negative gene sets and calculated MVS scores
(Fig. 6a). The MVS scores were substantially higher after
vaccination (Fig. 6b, c), suggesting that vaccination
mimicked an infection. Interestingly, the positive MVS
gene set was predominantly expressed in monocytes,

while the negative set in lymphocytes, indicating different
cell-type-specific immune responses would take place
after vaccination (Supplementary Fig. S3a, b).
To investigate which pathways were associated with

MVS-positive gene set and MVS-negative gene set, we
calculated Spearman correlation among MVS gene sets
scores and previously identified differentially enriched
pathways using our scRNA-seq data (Fig. 6d). The most
highly correlated pathway with MVS score and MVS-
positive set was “Inflammatory response signaling”, which
was strikingly upregulated in monocyte after vaccination,
together with CD14, FPR1, C5AR1, NAMPT, NLRP3,
CDKN1A, and IFNGR2. Whereas, MVS-negative set
correlated well with “Cytotoxicity signature”, represented
by NKG7, CCL4, CST7, PRF1, GZMA, GZMB, IFNG, and
CCL3 expression, significantly decreased in many T-cell
subtypes but not NK cells after vaccination (Supplemen-
tary Fig. S3c).

Discussion
This is a comprehensive investigation of the patho-

physiological changes, including detailed immunological
alterations in people after COVID-19 vaccination. Results
indicated that vaccination, in addition to stimulating the
generation of neutralizing antibodies, also influenced
various health indicators including those related to dia-
betes, renal dysfunction, cholesterol metabolism, coagu-
lation problems, electrolyte imbalance, in a way as if the
volunteers experienced an infection. scRNA-seq of
PBMCs from volunteers before and after vaccination
revealed dramatic changes in immune cell gene expres-
sion, not only echoing some of the clinical laboratory
measures but also suggestive of increased NF-κB-related
inflammatory responses, which turned out to be mainly
taking place in classical monocytes. Vaccination also
increased classical monocyte contents. Moreover, the
gene set positively contributing to MVS scores, also
known to be associated with severe symptom develop-
ment, was highly expressed in monocytes. Type I inter-
feron (IFN-α/β) responses, supposedly beneficial against
COVID-19, were downregulated after vaccination. In
addition, the negative MVS genes were highly expressed
in lymphocytes (T, B, and NK cells), yet showed reduced
expression after vaccination. Together, these data sug-
gested that after vaccination, at least by day 28, other than

(see figure on previous page)
Fig. 4 Subtype-specific differential gene expression and gene set overrepresentation analyses depicting common gene expression
changes amongst different types of immune cells after vaccination. a 11 major immune cell-type-specific DEGs identified by pseudo-bulk data
produced by combinations of samples before and after vaccination. Genes with logFC > 0.5 and adjust P < 0.05 were included. b Overrepresentation
analysis of HALLMARK gene sets from MSigDB amongst 11 major cell types demonstrated common changes in gene sets representing altered
immunological states before and after vaccination. c, d UMAP visualization colored by average expression scores (levels) based on differential
enrichment pathway. Box plot depicting the expression score distribution before and after vaccination.
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generation of neutralizing antibodies, people’s immune
systems, including those of lymphocytes and monocytes,
were perhaps in a more vulnerable state.
Interestingly, our preliminary data demonstrated that if

we pre-incubated RBD of SARS-CoV-2 with the PBMCs
(from volunteers before and after vaccination) and then
treated the cells with IFN-α/β, type I interferon responses
were actually enhanced in PBMCs after vaccination,
suggesting that perhaps vaccination, while reduced a
person’s general antiviral ability, enhanced adaptive
immune function specifically towards SARS-CoV-2
(Supplementary Fig. S4a). On the other hand, compar-
ing PBMCs before vaccination, pre-treatment of SARS-
CoV-2 S-RBD appeared to reduce type I interferon
responses (P < 0.05, IRF2, IRF7, STAT2) (Supplementary
Fig. S4b), suggesting 1st time exposure of the viral peptide
would actually cause a reduction in type I interferon
responses in PBMC. These in vitro data nicely supported
the scRNA-seq results.
It is worth mentioning that one individual in cohort A

who was on antibiotics, happened to not having reduced
gene expression linked to type I interferon responses, and
this individual also had the highest neutralizing antibody
titer within the cohort. We further calculated Pearson’s
Correlation Coefficient between neutralizing antibody
titers and inflammatory responses measured by averaged
gene expression of genes associated with TNFα Signaling
via NF-κB and interferon-α (type I interferon) responses.
The results were 0.32 and 0.39 with P > 0.05 (Supple-
mentary Fig. S4c), respectively, suggesting immune
response changes and adaptive immune protection of the
vaccine do not appear to be highly correlated. Whether
antibiotics may influence vaccine efficacy remains to be
determined. It is also rather interesting that while cohorts
A and B had different anti-SARS-CoV-2 antibody pro-
duction profiles, their PBMCs scRNA-seq results were
drastically similar, including their B-cell scRNA-seq data
(Supplementary Fig. S5a–c). It should be noted that after
vaccination, the majority of responsive B cells, particularly
those producing mature anti-COVID-19 antibodies (IgG)
including memory B cells, should be primarily located in

peripheral lymphatic tissues such as lymph nodes and the
spleen, while only a few mature B cells would exist in the
circulation. Therefore, the B-cell population in PBMCs
preparations may not reflect the whole spectrum of
humoral immunity.
The analyses presented in this study, particularly,

scRNA-seq of PBMCs had not been performed for pre-
vious vaccine evaluations, whether the changes in
immune system function-related genes were COVID-19-
specific or could be generally applied to other vaccines or
other types of COVID-19 vaccines remained to be
determined. However, these types of detailed analyses
should be overall beneficial to vaccine development and
applications. Our study postulates that it is imperative to
consider the potential long-term impact of vaccination to
certain medical conditions34 or to general human health.

Materials and methods
Participants, clinical data collection, and procedures
Healthy adult volunteers were recruited to the program.

All subjects underwent a physical examination and com-
pleted a questionnaire by trained doctors. Healthy adult
aged 18–60 years, with axillary temperature ≤ 37.0 °C,
negative for SARS-CoV-2 nucleic acid test, and willing to
complete all scheduled study processes were enrolled in
the study. People with epilepsy, brain or mental diseases,
history of allergies, uncontrolled major chronic illnesses,
and clinically significant abnormal findings on biochem-
istry, hematology tests were excluded. Pregnant or
breastfeeding women were also excluded. This study was
approved by the Ethics Committee of Shanghai East
Hospital in accordance with the principles of the Helsinki
Declaration (No.2020 (096)). Written informed consents
were obtained from all participants before enrollment.
A total of 11 participants were enrolled and vaccinated

to evaluate the clinical safety and dynamic changes in the
immune system. Among these, five participants (cohort
A) were vaccinated with 4 μg dose of inactivated SARS-
CoV-2 Vaccine (Vero Cell) on days 1 and 14, and six
participants (cohort B) received a 4 μg dose of the vaccine
on days 1 and 28. Inactivated SARS-CoV-2 Vaccine (Vero

(see figure on previous page)
Fig. 5 Identification of master regulons and their regulatory networks before and after vaccination. a Visualization for the “similarity-structure-
associating” metacells on the original scRNA-seq data. Metacells were color-coded according to their cell-type annotations. The original scRNA-seq
data were color-coded “blue” and “orange” to represent samples “before” and “after” vaccination, respectively. b Top panels: rank of regulons in
samples before (left) and after (right) vaccination, based on Regulon Specificity Score (RSS). Bottom panels: heatmap of top-ranked regulon activities
before (blue) and after (orange) vaccination based on AUCell scores. Names of the regulons are color (blue/orange) and number coded (1–8).
c Network of regulons and their target genes. The table below indicated the proportion of genes within the regulons which were up- or
downregulated after vaccination. d Gene functional annotation and related genes before (blue) and after (orange) vaccination. e Schematic overview
of the experiment. f After treatment with IFN-α/β, PBMCs from volunteers after vaccination had reduced expression of genes associated with type I
interferon responses as compared to those before vaccination. Paired Wilcoxon test was used. *P ≤ 0.05, n= 6.
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Cell) (China Biotechnology Group Corporation) was
administered intramuscularly into the deltoid. All vac-
cines were approved by the National Institutes for Food
and Drug Control of China.
Laboratory safety tests including infection-related indi-

ces (C-reactive protein, serum amyloid A protein),
hematologic parameters (white blood cell counts, neu-
trophil counts, lymphocyte counts, monocyte counts, red
blood cell counts, hemoglobin, platelet counts), coagula-
tion function-related indices (prothrombin time, activated
partial thromboplastin time/APTT, fibrinogen, pro-
thrombin activity/PT, international normalized ratio/
INR), blood glucose-related parameters (fasting plasma
glucose, HbA1c), serum lipid (total cholesterol, triglycer-
ide, HDL-C, LDL-C), cardiac function-related enzymes
(creatinine kinase, CK-MB), electrolytes (potassium,
sodium, chloride, bicarbonate, total calcium, magnesium),
liver function-related biomarkers (e.g., albumin, alanine
aminotransferase/ALT, aspartate aminotransferase/AST,
total bilirubin, and etc.), renal function-related markers
(creatinine, uric acid, blood urine nitrogen/BUN, esti-
mated glomerular filtration rate/eGFR) were measured.

COVID-19 antibody (IgG/IgM) testing
A number of commercially available COVID-19 anti-

body (IgG/IgM) rapid testing kits including “Innovita (S
protein specific)”, “GenBody (N protein specific)”, “Livzon
(S+N proteins)”, and “AbKhan (S+N proteins)” were
used to test anti-COVID-19 (IgM/IgG) positivities of
plasma from volunteers before and at different times after
vaccination. The “AbKhan” kit was most sensitive and
data were used in this study.

Neutralizing antibody test by PRNT
Serum samples were each tested using a plaque reduc-

tion neutralization test (PRNT) assay for SARS-CoV-2
(2019-nCoV-WIV04) in the BSL-3 laboratory. Briefly, sera
were heat-inactivated at 56 °C for 30min and diluted to
1:50, followed by threefold serial dilutions (1:50, 1:150,
1:450, 1:1350, 1:4050, and 1:12,150). Sera were then mixed
with 100 PFU of virus and incubated at 37 °C for 1 h. The
virus–serum dilution mixtures and virus control were
then inoculated into Vero E6 cell monolayers in 24-well
plates for 1 h before adding an overlay medium including
1.5% methylcellulose at 37 °C for 4–5 days to allow plaque
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development. Then the plates were fixed and stained with
2% crystal violet in 30% methanol for 30 min at room
temperature, and the plaques were manually counted and
measured. The PRNT titer was calculated based on a 50%
reduction in plaque count (PRNT50).

Preparation of single-cell suspensions, single-cell RNA
library preparation, and sequencing
The PBMCs were isolated from heparinized venous

blood from healthy volunteers using a Ficoll-PaqueTM

PLUS Media (GE Healthcare Inc.) according to the stan-
dard density-gradient centrifugation method provided by
the manufacturer. PBMCs were frozen in freezing media
(70% RPMI-1640, 20% FBS, and 10% DMSO), and stored
in liquid nitrogen until use. Single-cell capture and library
construction were performed using the Chromium Single
Cell 5′ Library & Gel Bead kit (10× Genomics) according
to the manufacturer’s instructions. Libraries were
sequenced using the Novaseq 6000 platform (Illumina).

scRNA-seq data analysis and statistics
Single-cell sequencing data were aligned and quantified

using kallisto/bustools (KB, v0.25.0)35 against the GRCh38
human reference genome downloaded from the 10×
Genomics official website. Preliminary counts were then
used for downstream analyses. We made a pipeline to
process data. Briefly, cells with less than 200 genes were
filtered out, the logarithmic normalized counts and top
3000 highly variable genes (HVGs) selection were per-
formed by Scanpy36.
We excluded specific genes from HVGs including

mitochondrial genes, immunoglobulin genes, and genes
linked to poorly supported transcriptional models
(annotated with the prefix “Rp-”). Then principal com-
ponent analysis (PCA) was performed utilizing the HVGs
and Harmony algorithm was used to remove batch
effects25. We used the PARC approach to identify clus-
ters37 and selected features by “FeatureSelec-
tionByEnrichment” function from cytograph2
algorithm38, followed by another round of PCA, Har-
mony, and PARC. Subsequently, we calculated K nearest
neighbors in a KNN graph, performed uniform manifold
approximation and projection (UMAP) by Pegasuspy39,
and identified clusters by PARC. In addition, we applied
Scrublet40 to identify potential doublets.
Quality control was applied to clusters based on output

of the first round of the pipeline:
1. Clusters with more than 20% cells of which doublet

score > 0.4 were defined as doublets clusters.
2. Clusters with more than 20% cells that had > 20% of

their transcripts mapped to mitochondrial genes
were defined as low-quality clusters.

3. Clusters with more than 20% cells that had < 0.05%
of their transcripts mapped to mitochondrial genes

were defined as nuclei.
4. Median expression of PPBP, PF4, HBB, HBA2 > 0,

indicating erythrocytes and platelets.
5. Less than 50 cells.
6. Detected gene numbers < 1000.
7. Ratio of mean of total UMIs and mean of detected

genes < 2.
8. Scrublet identified doublets.
9. Using DBSCAN41 to remove outliers.
After removing low-quality cells, we annotated cells by

single-cell recognition of cell types (SingleR) algorithm,
referring to Monaco immune datasets42.
Qualified cells were subjected to downstream analysis.

Similarly, we rerun the pipeline to identify main cell types
including T cells (CD3D, CD3E, CD3G, CD40LG, CD8A,
CD8B), B cells (MS4A1, CD79A, CD79B), NK cells
(GNLY, NKG7, TYROBP, NCAM1), and monocytes
(CST3, LYZ). In addition, we run the pipeline on each
type of cells, respectively, and further identified subtypes
based on the SingleR-identified cell types and well-
characterized markers (Fig. 3b).

Comparing immune cell proportion
For samples from PBMCs, we calculated immune cell

proportions for each major cell type and underlying
subtypes. For each sample, the cell-type proportion was
calculated by the number of cells in a certain cell type
divided by the total number of cells. To identify changes
in cell proportions between samples in different groups,
we performed a Wilcoxon test on the proportions of each
major cell types as well as cell subtypes across different
groups (Supplementary Fig. S2). Only those cell types with
statistically significant differences (P < 0.05) in propor-
tions are shown in Fig. 3e.

Differential expression analysis, gene sets
overrepresentation analysis, and score signature modules
To investigate immunological feature alterations, we

identified DEGs by muscat algorithm26 with default
parameters. Briefly, we first sum-collapsed the data,
summing UMIs across cells for each healthy donor, to
produce a bulk RNA-seq style UMIs profile for each
sample. Afterward, the aggregated counts were loaded
onto pbDS function to identify DEGs, and heatmaps were
plotted by pbHeatmap function. Gene set over-
representation analysis of DEGs (logFC > 0.5 and adjusted
P < 0.05) were performed using one-sided Fisher’s exact
test (as implemented in the “gsfisher” R package) with
“HALLMARK”, “KEGG”, and “REACTOME” gene sets
derived from MSigDB. Gene sets with P < 0.05 were
considered to be significant. Signature module scores
were calculated via “AddModuleScore” function, with
default settings in Seurat. Briefly, for each cell, the score
was defined as the average expression of the signature
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gene list subtracting the average expression of the corre-
sponding control gene list43. Gene lists used for analysis
are provided in Supplementary Table S11.

Metacell analysis
We used the R package “MetaCell”27 to analyze the data.

We removed specific mitochondrial genes, immunoglo-
bulin genes, and genes linked to poorly supported tran-
scriptional models (annotated with the prefix “Rp-”). We
then filtered cells with less than 500 UMIs. Gene features
were selected using the parameter Tvm= 0.08 and a
minimum total UMI count > 100. We subsequently per-
formed hierarchical clustering of the correlation matrix
between those genes (filtering genes with low coverage
and computing correlation using a down-sampled UMI
matrix) and selected gene clusters containing anchor
genes. We used K= 100, and 500 bootstrap iterations and
otherwise standard parameters. Metacells were annotated
by the most abundant cell types composing each metacell.

Gene regulatory network analysis
For identification and scoring of regulon activity, we

employed pySCENIC28,29 workflow on log-normalized
metacells data to determine sets of co-expressed genes.
We linked direct targets to their corresponding tran-
scription factors using RcisTarget databases (v1.2.1), and
retained putative downstream genes with enriched DNA
motifs at 10 kb or 500 bp from the transcription start site
(normalized enrichment score > 3). Finally, we used
AUCell function to score activity of each regulon across
cells in the dataset, which was computed as the sum of
genes expressed per regulon and produced binary activity
matrices based on cutoffs manually adjusted after
inspecting the distributions of AUC scores. Regulon
specificity scores (RSS) were calculated by the “reg-
ulon_specificity_scores” function from pySCENIC algo-
rithm with default parameters.

Analysis of IFN-α/β response of PBMCs
PBMCs were isolated from heparinized blood by Ficoll-

Hypaque at 400× g for 30min. The PBMCs (1 × 106ml−1)
of donors before and after vaccination were then seeded in
48-well culture plates with RPMI-1640 containing 5%
knockout serum replacement and 0.032% heparin. The next
day, medium was exchanged and cells were treated with
100 ng/ml IFN-α and 10 ng/ml IFN-β for 12 h. Some cells
were pre-treated with 250 ng/ml RBD for 16 h, followed by
IFN-α/β treatment for 12 h. Following washing and
extraction of total RNA, real-time quantitative PCR was
performed to detect the expression of type I interferon
response-associated genes. Fold changes relative to GAPDH
were calculated by 2-ΔΔCt and expressed as means ± SEM.
Differences between groups were evaluated using paired
Student’s t-test and considered significant when P < 0.05.

Statistical analysis
Clinical data were summarized using mean (standard

deviation), median (Q1, Q3), or number (percentage),
when appropriate. The Wilcoxon signed-rank test was
used to compare paired medians over time for laboratory
characteristics. In addition, Wilcoxon sum-rank test was
used to compare the median changes from baseline
between cohorts A and B. We graded adverse events
according to the scale issued by the China National
Medical Products Administration (https://www.nmpa.
gov.cn/xxgk/ggtg/qtggtg/20191231111901460.html) and
the judgment of laboratory test results was based on the
reference value range of the local population. All statis-
tical tests were two-sided. Statistical significance was
defined as P ≤ 0.05. Statistical analyses were performed
using SAS v9.4 (SAS Institute Inc., Cary, NC, USA).
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