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We demonstrate that universal scaling behavior is observed in the current coron-

avirus (SARS-CoV-2) spread, the COVID-19 pandemic, in various countries. We analyze
the numbers of infected people who tested positive (cases) in selected eleven coun-
tries (Japan, USA, Russia, Brazil, China, Italy, Indonesia, Spain, South Korea, UK,
and Sweden). By using the double exponential function called the Gompertz function,
fG(x) = exp(−e−x), the number of cases is well described as N(t) = N0fG(γ(t− t0)),
where N0, γ and t0 are the final number of cases, the damping rate of the infection
probability and the peak time of the daily number of new cases, dN(t)/dt, respectively.
The scaled data of cases in most of the analyzed countries are found to collapse onto a
common scaling function fG(x) with x = γ(t− t0) being the scaling variable in the range
of fG(x)± 0.05. The recently proposed indicator so-called the K value, the increasing
rate of cases in one week, is also found to show universal behavior. The mechanism for
the Gompertz function to appear is discussed from the time dependence of the produced
pion numbers in nucleus-nucleus collisions, which is also found to be described by the
Gompertz function.

1. Introduction

The COVID-19 pandemic is the worst disease spread in this century. As of May 20, 2020,

over 4 million people have tested positive in the world, and the number of cases N(t), the

number of infected people who tested positive at the time t, is still increasing rapidly. In

order to control the spread of infection, it is desired to understand the diffusion mechanism

of COVID-19.

Recently, a double exponential function called the Gompertz function is found to catch

the features of N(t) [1–20]. The Gompertz function appears when the infection probability

per infected people exponentially decreases as a function of time. With the Gompertz func-

tion, the daily number of new cases dN(t)/dt, daily increase of infected people who tested

positive, shows asymmetric time-profile rather than the symmetric one found in the predic-

tion of the Susceptible-Infected (SI) model [21], one of the standard models of the spread of

infection. The Gompertz function was proposed by B. Gompertz in 1825 to discuss the life

contingencies [22]. It is interesting to find that the Gompertz function also appears as the

number of tumors [23] and the number of detected bugs in a software [24], as well as particle

multiplicities at high energies [25].
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The exponential decrease of the infection probability is also important to deduce when the

restrictions can be relaxed. For example, Nakano and Ikeda [26] found that the number of

cases is well characterized by the newly proposed indicatorK, which represents the increasing

rate of cases in one week. The indicatorK takes a value between zero and unity, is not affected

by the weekly schedule of the test, and is found to decrease almost linearly as a function

of time in the region 0.25 < K < 0.9 provided that there is only a single outbreak affecting

the infection. In order to understand the linearly decreasing behavior of K, Nakano and

Ikeda proposed the “constant damping hypothesis” in their paper [26], and Akiyama proved

that the hypothesis of exponential decrease in discrete time shows the Gompertz curve in

continuous time [27], independently of other works [1–20]. Since the indicator K is expected

to be useful to predict the date when the restrictions can be relaxed as K(t) ' 0.05, it would

be valuable to analyze its solution, the Gompertz function, in more detail.

In this article, we analyze the number of cases by using the Gompertz function. We examine

that N(t) in one outbreak is well described by the Gompertz function in several countries.

Then with the time shift and the scale transformation of time and N(t), the data are found

to show universal behavior; they are on one-curve described by the basic Gompertz function,

exp(−e−x). The newly proposed indicator K [26] also shows universality. We further discuss

that the number of produced pions in nucleus-nucleus collisions is described by the Gompertz

function. This similarity may be helpful to understand the mechanism of COVID-19 spread.

This article is organized as follows. In Sec. 2, we give a brief review of the Gompertz

function and its relevance to the disease spread. In Sec. 3, we show the comparison of

the number of cases and the Gompertz function fitting results. We demonstrate that the

numbers of cases in many countries show universal scaling behavior. In Sec. 4, we show that

the number of pions in nuclear collisions is well described by the Gompertz function, and we

deduce the mechanism to produce the time-dependence described by the Gompertz function.

In Sec. 5, we summarize our work.

2. Gompertz function, indicator K and scaling variables

When the infection probability k(t) is given as a function of time, the evolution equation for

the number of infected people N(t) and its solution are given as

dN(t)

dt
= k(t)N(t), N(t) = N(t0) exp

[∫ t

t0

dt′k(t′)

]
. (1)

Adopting an exponentially decreasing function as k(t), the solution is found to be

k(t) = k(t0)e−γ(t−t0), N(t) = N(t0) exp

[
k(t0)

γ

(
1− e−γ(t−t0)

)]
. (2)

By choosing the reference time t0 so that k(t0) = γ, the solution is given as

N(t) =N0 exp(e−γ(t−t0)), (3)

where N0 = N(t0) exp(k(t0)/γ) = eN(t0) is the asymptotic value of N(t), N0 =

limt→∞N(t). Here, N0 can be interpreted as “terminal velocity”, since the evolution

equation (1) has an analogy to the equation of motion of particle feeling a viscous resistance,

where its coefficient is not constant but exponentially decreasing.
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Fig. 1 Comparison of Gompertz fG(x) and sigmoid fS(x) functions and their derivatives,

f ′G(x) = dfG(x)/dx and f ′S(x) = dfS(x)/dx, in the linear (top) and logarithmic (bottom)

scales. We also show f ′S(2x), the sigmoid function with doubled infection probability, by

green dot-dashed curves.

The double exponential function appearing in Eq. (3) is called the Gompertz function [22],

fG(x) = exp(−e−x). (4)

By using the Gompertz function, N(t) is given as

N(t)

N0
= fG(x), x = γ(t− t0), (5)

where x is the scaling variable for N(t).

One of the characteristic features of the Gompertz function is the asymmetry of its deriva-

tive in the early (x < 0) and late (x > 0) stages. In Fig. 1, we show the Gompertz function

fG(x) and its derivative,

f ′G(x) =
dfG(x)

dx
= e−x exp(−e−x), (6)

as functions of x. The derivative takes the maximum at x = 0, and the asymmetry in the

negative and positive x region is clearly seen.

This asymmetry should be compared with the solution of the SI model [21], in which the

susceptible people (S(t)) are infected by the infectious people (I(t)) at the rate proportional

to the product S(t)I(t),

dS

dt
= −kSI , dI

dt
= kSI , (7)

where k is a constant. The solution is found to be

I(t) =
N0

1 + exp[−γ(t− t0)]
= N0 fS(γ(t− t0)) , (8)

where N0 = S + I is a constant, γ = N0k, and t0 is the time when half of the people are

infected, I(t0) = N0/2. The characteristic function fS(x) is called the sigmoid function,
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which is also referred to as the logistic function,

fS(x) =
1

1 + e−x
=

1

2
[1 + tanh(x/2)] , f ′S(x) =

dfS(x)

dx
=

e−x

(1 + e−x)2
=

1

4 cosh2(x/2)
. (9)

Then the daily number of infected people is a symmetric function of t− t0,

dI(t)

dt
=N0γ f

′
S(γ(t− t0)) =

N0γ

4 cosh2[γ(t− t0)/2]
, (10)

where f ′S(x) = dfS(x)/dx. In Fig. 1, we also show fS(x) and dfS(x)/dx by green curves. At

large x (x ≥ 1), the Gompertz and sigmoid functions show similar behavior, fG(x) ' fS(x) '
1− exp(−x) and f ′G(x) ' f ′S(x) ' exp(−x). The difference found in the derivatives in the

figure comes from the factor (e and 4) multiplied to normalize them to be unity at x = 0. By

comparison, the sigmoid function with doubled transition probability (f ′S(2x)) approximately

agrees with f ′G(x) on average in the negative x region, −2 ≤ x ≤ 0. As already noticed [1–20]

and is discussed later, the asymmetry is clearly found in dN(t)/dt for COVID-19, so N(t)

is better understood by the Gompertz function than by the sigmoid function.

Once the solution is given, one can obtain the K value [26], increasing rate of the infected

people in a week, as

K(t) =
N(t)−N(t− w)

N(t)
= 1− exp

[
−(eγw − 1)eγ(t−t0)

]
= 1− fG(xK), (11)

where xK is the scaling variable for K(t),

xK = γ(t− t0 −∆t), (12)

∆t =w +
1

γ
log
(
1− e−γw

)
, (13)

with w = 7 days.

In the later discussions, we regard the number of cases (the number of infected people who

tested positive) as the number of infected people, since the latter is difficult to measure.

We expect that the former takes a similar value to the latter, as long as the infected people

are defined as the infectious people, who already have symptoms or bear enough amount of

coronavirus DNAs.

3. Comparison with data

3.1. Adopted dataset

Let us now examine the universal behavior given by the Gompertz function in real data.

We use the data given in Ref. [28] as of May 21, which contain the N(t) data from Dec. 31,

2019 (t = 0) till May 20 (t = 141). Throughout this article, we measure the time t in the

unit of day. In order to avoid the discontinuity coming from the definition change, we have

removed the spikes in the daily increase (dN(t)/dt) data in Japan (April 12, t = 103) and

China (February 13, t = 44), and instead the daily numbers in previous days are increased

by multiplying a common factor, which is determined to keep the total number of cases

in the days after the spike. The number of cases (N(t)) is obtained as the integral of thus-

smoothen dN(t)/dt. In addition, seven-day averages (±3 days) are considered in the analysis
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of dN(t)/dt in order to remove the fluctuations in a week. Thus-smoothen dN(t)/dt data

are available in 3 ≤ t ≤ 1381.

We have chosen the countries with a large number of cases (the USA, Russia, Brazil, and

the UK as of May 20, 2020), the first three Asian countries where the COVID-19 spread

explosively (China, South Korea, and Japan), the first two countries of spread in Europe

(Italy and Spain), a country with a unique policy (Sweden), and a country with somewhat

different dN(t)/dt profile (Indonesia).

3.2. Number of cases and its daily increase

In the left panel of Fig. 2, we show the daily number of new cases dN(t)/dt given in Ref. [28]

with the smoothing mentioned above. The legends stand for the abbreviation of the country

name (internet country domain code, see Table 1). The dN(t)/dt data show there is one big

peak in each country, and the shape of the peak is asymmetric; fast rise and slow decay. In

many of the countries, there are several other peaks, which are smaller than the dominant

one but visible at least in the log-scale plot. The fitting results using the Gompertz function

are shown by dotted lines, and are found to explain the dominant peak region of data well.
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Fig. 2 Daily number of new cases dN(t)/dt (left, symbols) and the scaling behavior

(right, symbols). In the left panel, dotted lines show the fitting results in the derivative

of the Gompertz function, dN(t)/dt ' N0γf
′
G(γ(t− t0)), and open circles show the peak

points in the fitting function, (t0, N0γf
′
G(t0)). In the right panel, solid black curve shows the

derivative of the Gompertz function f ′G(x), and the grey band shows its region with 5 %

uncertainty in γ and 20 % in N0. The green solid (dot-dashed) curve shows the derivative

of the sigmoid function normalized to reproduce the peak height, 4f ′S(x)/e (4f ′S(2x)/e).

The fitting to dN(t)/dt data is carried out by using the derivative of the Gompertz function,

dN(t)

dt
=N0γ f

′
G(γ(t− t0)). (14)

1 In actual fitting processes, we regard the daily difference as the derivative, N(t)−N(t− 1) =
dN/dt|t−1/2, then the actual fitting range is 2.5 ≤ t ≤ 137.5 for dN/dt. In the following discussions,
this half-day difference is not explicitly written but should be understood.

5/21

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.06.18.20135210doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20135210
http://creativecommons.org/licenses/by-nd/4.0/


Table 1 Fitting results with the fitting ranges of t. Parameters in the line with (*) are

adopted to draw figures.

Country γ [%/day] t0 [day] N0 [103] ∆N fit range χ2/dof

Japan 9.1± 0.2 104.0± 0.3 15.4± 0.3 1554± 22 85– 138 7.2 (*)

8.7± 0.3 103.8± 0.4 15.6± 0.4 0.5± 1.3 3– 138 11

USA 7.2± 0.1 100.3± 0.3 1202± 23 −800± 240 75– 138 6.7

5.2± 0.1 108.5± 0.4 1780± 28 0.1± 2.2 3– 138 240 (*)

Russia 3.7± 0.1 140.8± 0.9 819± 28 0.1± 0.3 3– 138 14 (*)

Brazil 1.3± 0.1 245± 15 15100± 5600 −806± 45 74– 138 24

1.9± 0.1 193.2± 4.3 3890± 510 −0.7± 0.6 3– 138 22 (*)

China 11.9± 0.2 36.4± 0.2 88.5± 1.5 52.6± 9.5 3– 50 14 (*)

14.1± 0.2 35.4± 0.2 78.9± 1.7 73± 19 3– 138 38

Italy 6.0± 0.1 89.1± 0.2 234.6± 2.0 0.0± 0.4 3– 138 16 (*)

Indonesia 2.7± 0.2 135.0± 3.0 42.4± 3.5 −173± 12 75– 138 4.6

3.4± 0.1 126.7± 1.2 32.8± 1.2 −0.2± 0.2 3– 138 3.2 (*)

Spain 8.1± 0.1 88.9± 0.2 231.5± 2.6 0.1± 0.4 3– 138 28 (*)

S.Korea 17.5± 0.4 60.4± 0.1 8.5± 0.2 0.2± 0.3 3– 75 3.4 (*)

14.1± 0.5 61.1± 0.3 9.1± 0.4 0.2± 0.7 3– 138 14

UK 4.8± 0.1 110.6± 0.4 310.1± 4.6 20± 19 60– 138 28

4.8± 0.1 110.6± 0.3 310.1± 3.5 0.1± 0.4 3– 138 16 (*)

Sweden 3.5± 0.1 116.0± 0.8 46.3± 1.1 −36.1± 5.7 60– 138 4.3

3.7± 0.1 114.9± 0.6 44.7± 0.8 −0.0± 0.2 3– 138 2.9 (*)

In order to concentrate on the dominant peak, we first limit the time region of the fit to

tmin ≤ t ≤ tmax, which covers it. Next, the fitting time region is extended to the whole

range, 0 ≤ t ≤ 140. In the fitting procedure, we have assumed a Poisson distribution for the

daily number of new cases, then the uncertainty in dN(t)/dt is assumed to be
√
dN(t)/dt+ ε,

where ε = 0.1 is introduced to avoid zero uncertainty in the case of zero daily number. We

summarize the obtained parameters (N0, γ, t0) in Table 1, and parameters in the line with

(*) are adopted to draw the figures. When the χ2 value is smaller in the whole range analysis

and the obtained parameters in the two cases are similar, the single outbreak assumption is

supported and we show only the results in the whole range analysis. In other cases, we in

principle adopt the results giving the smaller reduced χ2. The exception is the USA, where

the reduced χ2 is larger but we adopt the whole range analysis results. This is closely related

to the multiple outbreaks, and will be discussed in Appendix A. It should be also noted that,

unfortunately, the reduced χ2s are large in the single outbreak model with the present error

estimate of dN(t)/dt. There are non-negligible contributions of other outbreaks as discussed

in Appendix A. In addition, while we use the 7-day average data, we cannot completely

remove the daily oscillations of dN(t)/dt in a week coming from the test schedule. The

Gompertz function does not take care of such oscillators, then χ2/dof remains to be large.

In the right panel of Fig. 2, we show the normalized daily numbers, (dN(t)/dt)/(N0γ),

as functions of the scaling variable, x = γ(t− t0). Most of the data points are around the
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derivative of the Gompertz function and inside the gray band, which shows the region with

5% uncertainty in γ and 20% uncertainty in N0.

We also show the sigmoid function by the green curves in the right panel of Fig. 2. It is

clear that a single sigmoid function cannot describe the behavior of the dN(t)/dt data. If we

try to fit dN(t)/dt data by the sigmoid function, we need to adopt larger γ in the negative

x region as shown by the green dot-dashed curve in the right panel of Fig. 2, f ′S(2x), while

f ′S(x) approximately agrees with f ′G(x) in shape in the positive x region.
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Fig. 3 The reported number of cases N(t) (left) and the scaling behavior (right). In the

left panel, dotted lines show the Gompertz function fit, N0fG(γ(t− t0)), open circles show

the reflection points, (t0, N0/e), and open squares show the offset points, (toffset, Noffset).

In the right panel, the black solid curve shows the Gompertz function fG(x) and the grey

band shows the region fG(x)± 0.05. The green solid (dot-dashed) curve shows the sigmoid

function fS(x) (fS(2x)).

The left panel of Fig. 3 shows the number of cases N(t), obtained as the integral of

dN(t)/dt data after removing the spike. We also show the Gompertz function results with

the parameters (N0, γ, t0) determined from the dN(t)/dt data, and an integration constant

∆N ,

N(t) = N0 fG(γ(t− t0)) + ∆N, (15)

where ∆N is obtained by fitting to the N(t) data. In most of the countries, the Gompertz

function with ∆N explains the data in the large N(t) region and deviations are found only

in the region with small N(t). In Japan, the fitted time range is limited to be t ≥ 85 and

earlier time data are not fitted to. Thus deviations at t < 80 are visible in the log scale,

while the value is less than 10% of the total number of cases at t = 140.

We show the normalized N(t) as functions of the scaling variables in the right panel of

Fig. 3. We subtract ∆N from N(t). It is interesting to find that most of the world data are

on the Gompertz function fG(x). In Japan, China and South Korea, the fitted time range

is limited and deviation from the Gompertz function results are found in the earlier times

(Japan) and in later times (China and South Korea). It should be noted that the agreement

at x < 0 owes largely to the large denominator compared with the number of cases in the

early stage. Compared with the exponentially grown number of cases, the number of cases

7/21

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2020. ; https://doi.org/10.1101/2020.06.18.20135210doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20135210
http://creativecommons.org/licenses/by-nd/4.0/


in the early stage is much smaller and the ratio is seen to be very small. Nevertheless, it

is impressive to find the agreement of the Gompertz function and the observed number of

cases after scaling.

We also show the sigmoid functions, fS(x) and fS(2x), by green solid and dot-dashed

curves in the right panel of Fig. 3. As in the dN(t)/dt case, the sigmoid function fS(x)

agrees with the scaled data at x ≥ 1, but we need to use fS(2x), the sigmoid function with

a larger infection probability, to explain the scaled data in the region of x ≤ 0.

3.3. K value

We now proceed to discuss the K value. We choose the offset day when explosive spread

started, as shown by open squares in Fig. 3. The offset day and the offset number of cases,

(toffset, Noffset), are summarized in Table 2. With these offset parameters, the K value is

obtained as

K(t) =
N(t)−N(t− 7)

N(t)−Noffset
. (16)

Since Noffset is generally much smaller than the number of cases after explosive spread, the

K value is not sensitive to the choice of the offset parameters as long as we discuss the

long-time behavior.

Table 2 Offset parameters (toffset, Noffset) used to evaluate the K value.

Country toffset[day] Noffset

Japan 85 1193

USA 60 66

Russia 71 10

Brazil 74 98

China 18 80

Italy 53 17

Indonesia 75 96

Spain 62 136

S.Korea 50 46

UK 60 18

Sweden 60 12

In the left panel of Fig. 4, we show the K factor as a function of time. Data of K(t) are

explained by the prediction from the scaling function, 1− fG(xK), while the fluctuations

around the predictions are large compared with the number of cases, N(t). In the right

panel of Fig. 4, we show K values as functions of the scaling variable xK = γ(t− t0 −∆t).

Except for several countries, the scaling behavior in K is observed.

In Ref. [26], K(t) is found to show the linear dependence on time in the large K(t) region,

0.25 < K(t) < 0.9. Actually, the Gompertz function fG(x) shows the linear dependence on

time in the small |xK | region. When the scaling variable is small, the first-order Taylor
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Fig. 4 K value as a function of t (left) and as a function of the scaling variable xK .

In the left panel, dotted lines show the K value from the Gompertz function fit. In the

right panel, the black solid curve shows 1− fG(xK) and the grey band shows the region

1− fG(xK)± 0.05.

expansion would work,

K(t) = 1− exp(−e−xK ) = (1− 1

e
)− xK

e
+O(x2

K). (17)

The precision of this first order approximation is around 1% (10%) for |xK | ≤ 0.5 (|xK | ≤ 1),

where 1− fG(xK) amounts to be 0.45− 0.81 (0.28− 0.93). When K is smaller (K < 0.25),

e−xK should be also small and the Taylor expansion with respect to e−xK may work. Then

K decreases exponentially,

K(t) = 1− exp(−e−xK ) = 1−
(
1− e−xK

)
+O

(
(e−xK )2

)
' e−xK . (18)

With the sigmoid function, while scaling behavior is observed in N(t) and dN(t)/dt, K

does not scale as a function of a single scaling variable. In Fig. 5, we compare the functions

in the K value derived from the Gompertz and sigmoid functions for N(t) as functions of

x = γ(t− t0). With the Gompertz function, the shift of the scaling variable is enough for

the K value to be described by the basic Gompertz function. In contrast, the K value from

the sigmoid function reads

K(t) =
fS(γ(t− t0))− fS(γ(t− t0 − w))

fS(γ(t− t0))
=

1− e−γw

ex−γw + 1
. (19)

In addition to the shift in the scaling variable, the amplitude also depends on γw = 7γ.

3.4. Days of expected relaxing COVID-19 restrictions from the K value

When the K(t) value goes down to be around 0.05 [26], it would be possible to relax COVID-

19 restrictions such as lifting the lockdown of the city or relaxing the state of emergency. Let

us call those days as trelax. The days of relaxing the restrictions in several countries roughly

correspond to the time at K(t) = 0.05. With this condition, the number of cases in the

current outbreak will increase by around 5% and the infection in the current outbreak will

converge. In terms of the scaling variable, this corresponds to the solution of 1− fG(xK) =
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Fig. 5 Comparison of K values from the Gompertz and sigmoid functions in terms of

x = γ(t− t0).

0.05 and is found to be xK = xR ' 2.97. Thus the expected day of relaxing the restrictions

can be evaluated to be around,

trelax =
xR
γ

+ t0 + ∆t(γ), (20)

provided that there will be no further outbreaks. In Table 3, we summarize the expected day

of relaxing COVID-19 restrictions trelax from the Gompertz function analyses in comparison

with the relaxed day trelaxed in several countries.

Table 3 Expected day of relaxing COVID-19 restrictions trelax and the relaxed day trelaxed.

Country trelax[day] trelaxed[day]

Japan 135.4+1.5
−0.7 146

USA 149.9+2.0
−0.7 141

Russia 188.3+3.7
−1.2 133

Brazil 246.9+15.2
−4.2 –

China 63.6+0.8
−0.4 131

Italy 127.8+0.9
−0.4 125

Indonesia 175.5+5.2
−1.5 –

Spain 122.2+0.7
−0.3 123

S.Korea 82.4+0.7
−0.4 127

UK 153.3+1.5
−0.5 132

Sweden 162.3+2.7
−0.8 –

In Fig. 6, we show the expected days of relaxing the restrictions in comparison with some

of the relaxed days. The lockdown in the Wuhan city was lifted on May 10, 2020 (t = 131) in

China, the lockdown was relaxed on May 2, 2020 (t = 123) in Spain, May 4, 2020 (t = 125)

in Italy, and May 11, 2020 (t = 132) in the UK. Restrictions were relaxed in part on May 6,

2020 (t = 127) in South Korea, May 12, 2020 (t = 133) in Russia, and May 20, 2020 (t = 141)
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in the USA. In Japan, the state of emergency was declared on April 7, 2020 (t = 98) and

canceled on May 25 (t = 146). The relaxed days in Italy, Spain, Japan, the UK, and the USA

are close to those expected from the Nakano-Ikeda model analyses. In China and Korea, the

relaxed days were significantly later than the expectations from the model. One can guess

that the governments tried to be on the safe side in these first two countries of COVID-19

spread.
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Fig. 6 Expected days of relaxing COVID-19 restrictions and the relaxed days.

The expected day of relaxing COVID-19 restrictions strongly depends on the value of

the damping rate of the infection probability, γ, which people and governments should try

to enhance. In South Korea and China, the damping rate is larger than 0.1. Then the

infection probability decreases by a factor of 1/e within 10 days. In these countries, the

test-containment processes have been performed strongly. In many of the countries under

consideration (Japan, USA, UK, Italy, and Spain), the damping rates take the value between

4− 10%/day. In these countries, many of the restaurants and shops are closed and people

are requested to stay home for one month or more. Sweden may be an interesting example.

The Swedish government does not require restaurants and shops to be closed and does not

ask people to stay home. The government asks people to be responsible for their behavior

and social distancing is encouraged. The damping rate in Sweden, γ = 3.7%/day, may be

regarded as a value representing the intrinsic nature of COVID-19.

It would be valuable to comment on the use of the effective reproduction number, Re, which

is defined as the ratio of the number of new cases in one week to that in the previous week and

has the merit that it is not necessary to define the offset. For a constant infection probability

per infected people, k(t) = k0 = const. in Eq. (1), Re is found to be Re = exp(k0w) and we

can guess k0 from Re. In contrast, when the number of cases is given by the Gompertz

function, N(t) = N0fG(x), the effective reproduction number Re(t) is a function of two

variables, xK and γw,

Re(t) ≡
N(t)−N(t− w)

N(t− w)−N(t− 2w)
=

1− fG(xK)

fG(xK)[1− fG(xK − γw)]
, (21)

while K(t) is a function of a single scaling variable xK . Thus the universality observed in

K(t) is lost in Re(t), and it would be less easy to give a prediction of trelax from Re(t) than
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from K(t). In Fig. 7, we show Re(t) from the Gompertz function at γ = 4, 8 and 16%/day.

The value of Re(t) at xK = xR depends on γ, the value of xK at Re(t) = 1 is different from

xR, xK = 0.49 (1.42) for γ = 16% (4%)/day, and apparent large values of Re(t) appear in

the early stage, xK < 0 or t < t0 + ∆t(γ).
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Fig. 7 The effective reproduction number Re as a function of the scaling variable xK .

4. Mechanism of appearance of the Gompertz function

Fast and slow rises in the early and late stages are found in many physical processes such

as the particle production in nuclear collisions. In Fig. 8, we show the number of ∆ parti-

cles (∆++,∆+,∆0 and ∆−) and π particles (π+, π0 and π−) produced in central Au+Au

collisions at the incident energy of 1 GeV/nucleon [29]. Histograms show the calculated

results by using the hadronic transport model JAM [30]. The main production mechanism

of π particles at this incident energy is the ∆ production and its decay. In the early stage

(t < 15 fm/c), nucleons are excited to resonances such as the ∆ particles in the nucleon-

nucleon collisions, NN → N∆. Produced ∆s collide with other nucleons and ∆s, some of

them produce additional ∆ particles, ∆N → ∆∆, and some of them are deexcited to nucle-

ons in the ∆ absorption processes such as ∆N → NN . The ∆ particles decay and produce

π particles, ∆→ Nπ. Produced π particles may collide with other nucleons, ∆s and πs,

and occasionally produce additional ∆, πN → π∆. In the later stage, the system expands,

particle density decreases, and interaction rate goes down. When the density becomes low

enough, all ∆ particles decay to Nπ with the lifetime τ∆ = ~/Γ∆ ' 2 fm/c and π particles

go out from the reaction region and are detected.

The number of π and ∆ particles in the above nucleus-nucleus collision is found to be well

fitted by the Gompertz function fG(x) and its derivative f ′G(x). Curves in Fig. 8 show the

results of fit by the Gompertz function and its derivative,

Nπ(t) = NπfG(γπ(t− tπ)) , N∆(t) = N∆γ∆f
′
G(γ∆(t− t∆)) , (22)

where the parameters are obtained as (Nπ, γπ, tπ) = (62.0, 0.113 (fm/c)−1, 14.6 fm/c) and

(N∆, γ∆, t∆) = (760, 0.160 (fm/c)−1, 14.3 fm/c). Compared with the lifetime of ∆, the num-

ber of ∆ during nucleus-nucleus collisions has a longer tail. This may be because of the

relativistic effects, resonance mass dependence of the width, and sequential decay and

production of ∆ such as ∆→ πN followed by πN → ∆.
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Fig. 8 The number of π and ∆ particles as functions of time t in central Au+Au collisions

at the incident energy of 1 GeV per nucleon. Histograms show the π (red) and ∆ (blue)

numbers taken from Ref. [29], and solid curves show the fitting results using the Gompertz

function. The green dashed curve shows the sum of π and ∆ numbers.

Let us discuss the time dependence of the pion production in a simplified treatment, where

the microscopic processes are limited to be the ∆ production from NN collisions and the ∆

decay, and the Markov processes are assumed,

dN∆(t)

dt
=C(t)− ΓeffN

∆(t),
dNπ(t)

dt
= ΓeffN

∆(t), (23)

where C(t) denotes the production rate of ∆ from NN collisions and Γeff represents the

effective decay rate of ∆. The above ∆ decay represents the net decay rate, the difference

of the rate of ∆→ Nπ and Nπ → ∆ in nuclear collisions. By further assuming that Γeff

is constant in time, the solution of Eq. (23) is obtained as N∆(t) =
∫ t
−∞ dt

′e−Γeff(t−t′)C(t′).

Then after the time where C(t) vanishes, N∆ decays exponentially and its integral, Nπ,

approaches to a constant. These features agree with those of the Gompertz function in

the late stage. Earlier time behavior depends on the function form of C(t). In terms of

the scaling variable, x = Γeff(t− t0), Eq. (23) reads N∆π(x) ≡ N∆ +Nπ = dNπ/dx+Nπ =∫ t0+x/Γeff

−∞ dtC(t). The function N∆π is a rapidly increasing function of time in the early

stage, and the increasing rate becomes smaller in the later stage because of the energy loss

and expansion of nuclear matter. If we fit the curve to the N∆π data in Ref. [29] by using

fS(x), fS(x) + f ′S(x), fG(x) and fG(x) + f ′G(x) in the ∆ production region (t ≤ 15 fm/c),

the variance of residuals (reduced χ2 with the uncertainty of unity being assumed in the

data) is the smallest with fG(x) + f ′G(x) as shown by the green dashed curve in Fig. 8. This

supports that Nπ is described by a Gompertz function, while the mechanism of this function

form to appear is not understood. It should be noted that the number of ∆ is proportional

to the increasing rate of π number in the present simplified treatment, but the fitting to the

transport model data results in γ∆ 6= γπ, implying that this is not the case.

It should be noted that one ∆ particle mostly decays into Nπ and additionally produced

number of π is less than unity in the present pion production in nucleus-nucleus collisions.

A rough estimate of the upper bound of the basic reproduction number R0 from ∆ to π

may be obtained as follows. The lower bound of the number of produced ∆ particles is

the peak number of ∆, which is N∆ = 45.3 at t = 14 fm/c in the calculated data and is
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expected to be N∆(t∆) = N∆γ∆/e ' 44.7 at t = t∆ from the Gompertz function. Then the

upper bound of the additionally produced π number is given as Nπ(t =∞)−N∆(t∆) ' 17.

Consequently, the upper bound of R0 is given as R0 = [Nπ(t =∞)−N∆(t∆)]/N∆(t∆) '
0.38, which is less than unity. As a result, the number of pions in the final state is already

determined in the early stage. The green dashed curve in Fig. 8 shows the ”π-like” particle

number, Nπ∆ = Nπ +N∆, which shows a peak at t ' 16 fm/c, gradually decreases by the

∆ absorption processes, and converges to Nπ(t =∞).

Based on the success in describing Nπ(t) by using the Gompertz function as in the case

of N(t) associated with COVID-19, we may make a conjecture of the correspondence of

the COVID-19 spread and the π production in nuclear collisions. Let us assume that π

particles correspond to the cases. Then ∆ particles are regarded as the coronavirus carriers,

defined as the infected people who have not tested positive yet. Carriers will test positive

later or will be recovered without testing positive. The susceptible people are infected and

become carriers in the initial dense stage (∆ production), occasionally infect other susceptible

people (additional ∆ production) or are recovered (∆ absorption), develop symptoms and

test positive (∆→ Nπ). Thus the number of carriers (N∆) increases rapidly by explosive

spread of infection in the early stage (∆ production stage), while it decreases more slowly by

developing symptoms in the late stage (∆ decay stage). This causes the asymmetric time-

profile in the number of carriers (N∆), which is roughly proportional to the daily number

of new cases (dNπ/dt). By comparison, the number of infected people including carriers

(Nπ +N∆) grows rapidly in the early dense stage but does not change much in the later

stage. Hence, except for the early dense stage, the basic reproduction number would be less

than unity.

5. Summary

We have analyzed the number of cases (the number of infected people who tested positive for

COVID-19), as a function of time, N(t), by using the double exponential function referred

to as the Gompertz function, fG(x) = exp(−e−x). The Gompertz function appears when the

infection probability is an exponentially decreasing function of time. One of the characteristic

features of the Gompertz function is the asymmetry of its derivative, f ′G(x) = dfG(x)/dx,

fast rise and slow decay.

This feature is found in the daily new cases, dN(t)/dt. We have assumed that the number

of cases from one outbreak is given as N(t) ' N0 exp[−e−γ(t−t0)], where N0, γ and t0 are

the final number of cases, damping rate of the infection probability, and the time where

the daily number of new cases peaks out. These parameters are obtained by the χ2 fitting

to the dN(t)/dt data. Then we have found that N(t) and dN(t)/dt show universal scaling,

N(t)/N0 = fG(x) and (dN(t)/dt)/(N0γ) = f ′G(x), where x = γ(t− t0) is the scaling variable.

The K value, the increasing rate of cases in one week, is also found to show the scaling

behavior, K(t) = 1− fG(xK), where xK = γ(t− t0 −∆t(γ)) is the scaling variable for K(t)

with ∆t(γ) being a given function of γ.

We have also found that the time dependence of the produced pion number in nucleus-

nucleus collisions is described by the Gompertz function. Since both of the COVID-19 spread

and the pion production are transport phenomena, the mechanism of the former may be
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similar to the latter. If this is the case, there is a possibility that the basic reproduction

number is high only in the initial stage of the outbreak.

Throughout this article, we have imposed the single-outbreak assumption. Since this

assumption may be too restrictive, we show the results of multiple-outbreak analyses in

Appendix A. The multiple-outbreak analyses also show that the COVID-19 spread in one

outbreak is well described by the Gompertz function. We also note that after submitting

the original manuscript of this article, the daily numbers of new cases are found to be sig-

nificantly larger than the predictions given in Fig. 2 (and Fig. A1 in Appendix A). We give

brief descriptions of the data observed later in some countries in Appendix B.
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A. Multiple-outbreak model analysis

In the analyses in the main text, we have assumed that there is only one dominant outbreak.

Let us consider here the multiple-outbreak cases, where we assume the number of cases is

described by the sum of several Gompertz functions,

N(t) =

n∑
i=1

NifG(γi(t− ti)) + ∆N . (A1)

As in the single-outbreak model discussed in the main text, we analyze the daily number of

new cases, dN(t)/dt,

dN(t)

dt
=

n∑
i=1

Niγif
′
G(γi(t− ti)) , (A2)

where f ′G(x) = dfG(x)/dx.

In Fig. A1, we show dN/dt in Eq. (A2) in comparison with the daily number of new cases.

In the multiple-outbreak analysis, we use data in the whole range, 0 ≤ t ≤ 140. Two or three

outbreaks are considered, and we try to describe the region with large dN/dt by adding

outbreaks. Obtained parameters are summarized in Table A1.

In many countries under consideration, dN/dt is decreasing on May 21, 2020, and the

parameters are well determined. Then we adopt the three-outbreak model (n = 3). In Japan,

China, and South Korea, multiple-outbreak structure of dN/dt is clearly seen in the logarith-

mic plot and can be fitted by using Eq. (A2). In Russia, Italy, Spain, the UK and Sweden,

additional outbreaks improve the reduced χ2 by filling the peaks which are not covered by the

single outbreak. In Brazil and Indonesia, where the numbers of cases are still rapidly increas-

ing, we need at least one outbreak term with ti > tnow. In those cases, parameters generally

have large uncertainties, so the third outbreak, if included, has extremely large uncertainties

larger than 100 %. Thus we use the two-outbreak model (n = 2) in these countries.

In the USA, there are many centers of outbreaks. In Fig. A2, we show the dN(t)/dt data in

New York, Massachusetts and California states [31]. It is possible to fit the data in each state

by using the Gompertz function, but the results show significantly different values in (γ, t0).
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Fig. A1 Daily number of new cases dN/dt with single-outbreak (grey) and multiple-

outbreak (red) model analyses in the linear (top) and logarithmic (bottom) scales. Magenta,

green and blue dotted curves show the contributions from the first, second and third

outbreaks, respectively.
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Table A1 Parameters in multiple-outbreak model analyses.

Country γi[%/day] ti[day] Ni[103] ∆N

Japan 5.0± 0.5 78.5± 3.0 2.2± 0.3 0.3± 0.3

8.2± 0.3 104.3± 0.2 11.4± 0.6

19.4± 1.8 105.0± 0.3 3.2± 0.6

USA 9.4± 0.2 95.4± 0.4 560± 33 0.2± 0.5

3.7± 0.1 124.8± 1.2 1682± 21

Russia 15.4± 0.5 111.8± 0.2 28.9± 1.8 0.1± 0.1

16.1± 0.6 128.8± 0.2 65.8± 5.1

3.3± 0.0 144.1± 0.9 647± 31

Brazil 5.0± 0.4 111.3± 3.5 86.6± 22.4 0.0± 0.1

3.4± 0.4 160.6± 4.9 1380± 330

China 14.8± 2.1 32.0± 1.9 36.5± 14.6 52.2± 6.6

17.0± 1.3 38.5± 0.3 43.8± 14.6

10.4± 0.6 90.0± 0.8 2.5± 0.2

Italy 8.3± 0.5 76.6± 1.8 47.3± 11.1 0.0± 0.1

10.6± 0.4 85.0± 0.3 110± 12

7.4± 0.1 110.0± 0.6 76.7± 3.7

Indonesia 4.1± 0.1 116.5± 1.0 22.3± 1.0 −0.1± 0.1

6.0± 2.4 152± 12 23± 23

Spain 19.1± 0.9 86.3± 0.2 36.9± 3.2 0.1± 0.2

7.5± 0.1 89.5± 0.1 195.4± 3.2

39.8± 3.1 129.9± 0.2 3.6± 0.3

S.Korea 17.5± 0.3 60.4± 0.1 8.5± 0.2 0.2± 0.2

12.6± 0.6 87.8± 0.5 2.0± 0.1

15.0± 3.7 134.1± 1.9 0.4± 0.1

UK 5.7± 0.1 106.1± 0.3 251.5± 3.5 0.1± 0.3

15.5± 1.3 127.6± 0.4 29.4± 3.0

50± 38 137.0± 1.4 2.0± 1.9

Sweden 17.2± 1.4 73.2± 0.5 1.3± 0.2 0.0± 0.1

12.0± 1.1 94.9± 0.7 4.3± 0.8

3.4± 0.1 124.1± 1.7 44.6± 0.9

This would be the reason of the slow decrease of dN(t)/dt in the USA. As a result, a single-

outbreak treatment is not appropriate. By comparison, the dN(t)/dt data are reasonably

explained by two outbreaks (n = 2). We have used the data in Ref. [28] updated on June 7,

2020. The daily number of new cases does not decrease and it seems that it takes more time

for the settle down.

After obtaining (Ni, γi, ti) by fitting dN/dt data, the constant part (∆N) is obtained by

fitting N(t). Thus obtained multiple-outbreak functions in Eq. (A1) are compared with the

data in Fig. A3. In the region with N(t) > 100, the multiple-outbreak functions are found
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Fig. A3 Number of cases N(t) with single-outbreak and multiple-outbreak model analyses

in the linear (top) and logarithmic (bottom) scales. Magenta, green and blue dotted curves

show the contributions from the first, second and third outbreaks, respectively.

to explain the data well. This supports the idea that the number of cases in one outbreak

would be described by the Gompertz function.

B. COVID-19 spread in July and August

After submitting the original manuscript in June, 2020, we find excess of cases over the pre-

dictions in several countries. It is also valuable to verify the consequences of the lockdowns.

We give a brief description of the above mentioned issues. This Appendix is given as a ”note

added”, and the details will be reported elsewhere.

In Sweden, the USA and Japan, significant excess of cases over the Gompertz function

analyses has been observed after mid June as shown in Fig. B1. In addition to dN(t)/dt,

dD(t)/dt can be also explained by the Gompertz functions [1], as shown by blue (dN(t)/dt)

and red (dD(t)/dt) solid curves. Each of the dotted curves shows the contribution from one

outbreak. We have used two and three Gompertz function terms for Sweden and the USA,

respectively, and three and four terms for dN(t)/dt and dD(t)/dt in Japan. In Sweden,

dN(t)/dt started to increase again around t = 140, but dD(t)/dt kept decreasing. In the

USA, dN(t)/dt started to increase again around t = 165, Compared with the new cases, the

increase of dD(t)/dt after mid June is less prominent. The grey dashed line shows the fitting

results of the new cases shifted later by seven days and multiplied by 0.07, A× dN(t− tD)/dt

with A = 0.07 and tD = 7. This curve roughly agrees with dD(t)/dt until t ' 130 but is
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Fig. B1 The number of new cases dN(t)/dt (blue histograms), the daily number of deaths

dD(t)/dt (red histograms), and the number of new PCR tests with the rescaling factor 0.1

or 0.2 (green histograms) in Sweden (left), the USA (middle) and Japan (right). Histograms

show the data taken from Ref. [28]. Solid (dotted) curves show the fitting results in the

multiple-outbreak model for dN(t)/dt (blue) and dD(t)/dt (red) (their breakdowns). The

grey dashed curves show the shifted and scaled dN(t)/dt results in the model (see the text).

larger than dD(t)/dt later. A similar trend is observed but more strongly in Japan. We

find dN(t)/dt once decreased rapidly but increased again around t = 160. The shifted and

scaled function of the new cases (A = 0.05 and tD = 14) roughly explains the daily number

of deaths until t ' 170 but it overestimates dD(t)/dt later.

Let us guess the reason of these behaviors. There are several possible reasons of the

dN(t)/dt increase in July, such as (a) increase of the number of PCR tests and improved sen-

sitivity, (b) lifting the lockdown and economic resumption, and (c) genomic mutation [32].

As for the decrease of mortality (death rate), (ab’) dominance by young and mild symptom

cases from (a) and (b) with improved medical care, (c) genomic mutation [32], and (d) T cell

immunity [33] are the candidate reasons. In Sweden, the government expanded coronavirus

testing to include people with mild symptoms on May 19 (t = 141), then the increase of cases

after t = 140 may have been caused mainly by the candidate reason (a), the increase of the

number of PCR tests. The increase of cases would have been dominated by the people with

mild symptoms and the actual number of infected people may have not increased. Then it

is reasonable that dD(t)/dt did not increase. In the USA and Japan, dD(t)/dt also started

to increase in late June (t ≥ 160), and then the reason (a) is not enough. We guess that the

candidate reason (b), lifting the lockdown and economic resumption, would have affected the

spread, and that (ab’), dominance by young and mild symptom cases with improved medical

care, may have suppressed the mortality. We would like to mention other possibilities, (c)

and (d). It is already pointed out that the genomes with advanced mutation are found after

late June in Japan [32]. The candidate reason (c), a genomic mutation, may have caused

the July and August epidemic and reduced mortality. Another candidate is (d), the T cell

immunity [33]. The memory T cells exposed by the SARS-CoV-2 may work for long-term

immune protection against COVID-19 [33], and these effects may be enhanced by the BCG

vaccination [34]. This mechanism can be universal and explains the suppression of mortality

in many countries. The actual mechanism of the present coronavirus spread would be the

combination of (a)-(d) and others. Analyses of more data and further research of infection

diseases are necessary to elucidate the mechanism. These are out of the scope of this article.
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Fig. B2 The K value as a function of t (left) and the number of new cases dN(t)/dt,

the daily number of deaths dD(t)/dt, and the number of new PCR tests with the rescaling

factor 0.5 (right) in the UK. The meaning of the curves in the right panel are the same as

those in Fig. B1. In the left panel, we show the lockdown time, two weeks later after the

lockdown, the peak time(s) in the single (multiple) outbreak model t0 (t1 and t2) by arrows.

The grey dashed line in the right panel shows the shifted and scaled function of the new

cases with A = 0.15 and tD = 7.

The numbers of total confirmed cases and the K value should depend on both the lockdown

of the social systems and the number of PCR testing carried out in the countries. Let us

here take a look at these effects in the case of the UK, as an example. In Fig. B2, we show

the K value before t = 140 (left) and the number of new cases, death and PCR tests (right).

The peak time was t = t0 = 110.6 (t = t1 = 106.1) in the single-outbreak (multiple-outbreak)

analysis. The lockdown in the UK started on March 23 (t = 83), and the K value started to

decrease around two weeks after the lockdown (t = 97) as seen in the left panel of Fig. B2,

while the decrease is not enough to go well below the Gompertz curve. Nevertheless, we

should mention that the lockdown prevented the next outbreak to start. The increase of new

cases around t = 120 is considered to be caused by the speedy increase of the PCR testing

since the daily number of deaths kept decreasing, and the next outbreak started later than

the lift of the lockdown, t = trelaxed = 132. It should be noted that these are conjectures

deduced from the dN(t)/dt and dD(t)/dt data, and confirmation by further analyses would

be necessary.
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[12] Jean Roch Donsimoni, René Glawion, Bodo Plachter, Constantin Weiser, and Klaus Wälde, medRxiv
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