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1 Introduction

The World Health Organisation (WHO) has been tracking the impact of COVID-19 as the

pandemic has evolved over time. Aggregate case and death numbers are being reported to

the WHO and the data have been made publicly available at https://covid19.who.int/.

For a number of reasons, these data do not provide a complete picture of the health burden

attributable to COVID-19, nor of how many lives have been lost due to the pandemic. Some

deaths that are attributable to COVID-19 have not been certified as such because tests had not

been conducted prior to death. There have also been variations in the death certification rules

countries have applied in regards to COVID-19 (Riffe and Acosta, 2021).

The impact of the pandemic is far reaching. Beyond the deaths directly attributable to it are

those that can be linked to the conditions that have prevailed since the pandemic began and

have led to some health systems being overwhelmed or some patients avoiding healthcare.

In countries where COVID-19 spread was limited, due to lockdown measures or otherwise,

some potential causes of death have decreased, such as those attributable to air pollution, or

traffic accidents, or from other communicable diseases such as influenza like illness, resulting

in negative excess or deficit deaths (Kung, Doppen, Black, Hills, and Kearns, 2020; Karlinsky

and Kobak, 2021).

In light of the challenges posed by using reported COVID-19 data, excess mortality is con-

sidered a more objective and comparable (across countries) measure of the mortality im-

pact of COVID-19 (Leon, Shkolnikov, Smeeth, Magnus, Pechholdová, and Jarvis, 2020). The

WHO defines excess mortality as, “the mortality above what would be expected based on the

non-crisis mortality rate in the population of interest” (https://www.who.int/hac/about/

definitions/en/). Knowledge of the excess deaths not only paints a clearer picture of the

pandemic, but can also aid in implementing public health initiatives.

To derive estimates of the excess mortality attributable to COVID-19 in country c, all-cause

mortality (ACM) counts in month t for 2020 and 2021 are denoted by Yc,t and, in addition to

the expected deaths, are assumed to be a result of the direct effects of COVID-19 (i.e., deaths

attributable to it) and the indirect knock-on effects on health systems and society, along with

deaths that were averted. The choice of a monthly time scale gives sufficient temporal reso-

lution for most public health purposes. The hypothetical or “counterfactual” no-COVID-19

scenario uses the expected death numbers Ec,t, which are forecasted using historic (prior to

the pandemic) deaths data.

Excess deaths are defined as:

δc,t = Yc,t −Ec,t (1)

for country c where c = 1, . . . ,194, and in month t where t = 1, . . . ,24, represent months in 2020

and 2021.
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The exercise of determining excess deaths for all countries is non-trivial, because the required

ACM counts Yc,t are currently unavailable for many country/month combinations. Routine

mortality data is often received by the WHO a year or more after the year of death. In ad-

dition, differential reporting capacity and variable data quality across countries has resulted

in many nations lacking the systems to provide good quality routine data even historically

(Mikkelsen, Phillips, AbouZahr, Setel, Savigny, Lozano, and Lopez, 2015; Adair and Lopez,

2018; GBD, 2020; UNSD, 2021; Karlinsky, 2021). Correspondingly, these countries lack the

capacity required to monitor ACM during the unprecedented COVID-19 pandemic. Hence, a

number of countries are unable to contribute to the centralized systematic mortality surveil-

lance that would be needed to measure global, regional and country level excess mortality by

the WHO.

In this report we describe our ongoing methods development to produce the WHO excess mor-

tality estimates. In Section 2 we discuss data sources, before describing models for estimation

of the expected numbers in Section 3. Section 4 describes our national models used to estimate

all-cause mortality under different scenarios of data availability. Section 5 describes the cur-

rent approach that has been applied to derive preliminary age- and sex-distribution of deaths.

Finally section 6 provides some metrics used to assess the model performance.
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2 Data Sources

2.1 Mortality Data

Excess mortality cannot be directly measured for all countries due to many not having the

required ACM data. The WHO usually receives routine mortality data on an annual basis in

the year after the year of death or perhaps after an even greater lag. Civil registration and vital

statistics (CRVS) systems differ greatly across countries with varying timelines and quality

control measures for compiling unit record cause-of-death numbers into aggregates identified

by cause, age, sex, place, and period of death. In addition, differential reporting coverage, the

absence of electronic surveillance systems in some locations and limited investments in CRVS

systems has resulted in many nations lacking the structures necessary to provide good quality

routine data, even before the COVID-19 pandemic. This lack of capacity and the data required

to monitor ACM has been exacerbated during the unprecedented pandemic. Therefore, many

countries are unable to contribute to a centralized systematic mortality surveillance that would

be needed to measure global, regional and country level excess mortality by the WHO.

Table 1 summarises the data that are available for this exercise. Groupings include ”Full na-

tional” countries, which are countries that have data over all 24 months (January 2020 to

December 2021); ”Partial national” which have data for less than 24 months; ”Mixed data”

countries with subnational monthly data for some period (4 countries), national annual data (5

countries) or a combination (China) and then countries without reported ACM that the WHO

have had access to. Groupings in the table are according to the WHO regions: African Region

(AFRO), Region of the Americas (AMRO), Eastern Mediterranean Region (EMRO), European

Region (EURO), South-East Asian Region (SEARO), Western Pacific Region (WPRO).

Region Full National Partial National Mixed Data No Data Total

AFRO 4 2 0 41 47

AMRO 12 11 4 8 35

EMRO 4 5 0 12 21

EURO 46 5 1 1 53

SEARO 1 1 3 6 11

WPRO 6 3 2 16 27

Global 73 27 10 84 194

Table 1: Country data availability summary for 2020 and 2021

All countries report their official COVID-19 death count, but these do not provide a complete

picture of the impact of the pandemic, for many reasons already outlines. However, the official

count does provide an interesting summary for comparison with the estimated excess, and the

COVID-19 death rate is used as a covariate in our ACM estimation model.
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For this study, our main sources of data are reports of ACM as collected and reported by

countries’ relevant institutions – from national statistics offices, ministries of health, popu-

lation registries, etc. These have been collected in several repositories such as the data rou-

tinely shared with WHO as part of its standing agreement with member states, Eurostat, The

Human Mortality Database (HMD) as part of the Short-Term Mortality Fluctuations (STMF)

project (Németh, Jdanov, and Shkolnikov, 2021) and the World Mortality Dataset (WMD), as

described in Karlinsky and Kobak (2021).

The work we report on here is a snapshot of the current state of data availability and over

time the situation will improve. As shown in Table 1, just over a half (99) of the 194 countries

provide monthly national data from at least some of the pandemic period, while 10 other

countries provide subnational monthly data, national annual data, or a combination of the

two. It is immediately clear that there is a huge regional imbalance in data availability, with

the EURO region being very well represented, the AMRO region having data from 64% of the

countries, and other regions being more poorly represented. For example, in the AFRO region

we only have data from 6 out of 47 countries. For those countries with data in month t, we

assume that the ACM part of the excess δc,t, as defined in (1), is known exactly. Hence, we do

not account for inaccuracies in the reported deaths. For all countries we do, however, account

for uncertainty in the expected numbers.

2.2 Covariate Data

A range of covariates were considered, including a high income country binary indicator,

COVID-19 test positivity rate, COVID-19 death rate, temperature, population density, socio-

demographic index (SDI), human development index (HDI), stringency (index for lockdown

restrictions and closures), overall government response, economic (including measures such

as income support and debt relief), containment (combines lockdown restrictions and clo-

sures), historic non-communicable disease rates, historic cardiovascular disease rate, historic

HIV rate, historic diabetes prevalence, life expectancy, proportion of the population under-15,

proportion of the population over-65. A number of these covariates are time-varying (COVID-

19 test positivity rate, COVID-19 death rate, temperature, stringency, overall government re-

sponse, containment), while the remainder are constant over time. A number of the covariates

were not available by month for all countries and so their values were imputed. Specifically,

regional values were used for countries with missing data. Details are given in the Supple-

mentary Materials.
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3 Deriving expected mortality for years 2020 and 2021

A key component of the excess mortality calculation is the ACM count that would be expected

in non-pandemic times, for each country and month. We describe models for two types of

countries: those that have historic monthly ACM data, and those that have historic annual

ACM data only – 100 countries have historic monthly data and 94 have historic annual data.

In terms of the period upon which we base the expected numbers, it is usually 2015–2019 for

countries with monthly historical data, and is usually 2000–2019 for countries with annual

historical data.

3.1 Countries with Monthly Data

We consider first those countries with monthly ACM data over multiple years (usually 2015–

2019). For country c, Yc,t represents the ACM count for country c and month t, for t = 1, . . . ,Mc,

where Mc is the number of historic months for which we have data. We assume the sampling

model for Yc,t is,

Yc,t |µc,t ∼NegBin(µE
c,t ,φ

E
c ),

parametrized in terms of the mean, µE
c,t, and the overdispersion parameter, φE

c , such that

var(Yc,t |µE
c,t ,φ

E
c ) = µE

c,t(1 + µE
c,t/φ

E
c ), with the Poisson model being recovered as φE

c → ∞. We

let v[t] index the year in which month t occurred (for example, labeled 1, . . . ,5 when data are

available for 2015–2019) and m[t] be the month (labeled 1, . . . ,12), so that given v,m we can

find t as t = 12(v − 1) +m. The mean is modeled as,

ηc,t = log(µc,t) = f y
c (v[t]) + f m

c (m[t]) (2)

where f y
c (·) models the annual trend, and f m

c (·) is a smooth function of time t which accounts

for within-year seasonal variation. The yearly trend is modeled with a thin-plate spline and

within-year variation with a cyclic cubic spline (Rivera, Rosenbaum, and Quispe, 2020). In

both cases we use the gam function in the mgcv package with generalized cross-validation

(Wood, 2017, Section 4.5.3) used to select smoothing parameters. The spline model is fitted

separately for each country. Algeria, Iraq and Sri Lanka have less than three years of monthly

historical data, and so a linear term is used for modeling yearly variation. This model is used

to obtain predictions of the expected deaths µE
c,t for all t in 2020 and 2021, with both a point

estimate and a standard error being produced.

3.2 Countries with Annual Data

For countries with only annual historic data, the goal is to predict excess expected numbers

by month t for t = 1, . . . ,24. The annual trend can be estimated for each country using the

method we described in the previous section minus the monthly term, i.e., a spline in year.

To apportion the yearly totals to the months, we use a multinomial with within-year variation
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modeled using temperature, which is acting as a surrogate for seasonality. This relationship

is learned from countries with historic monthly data. We use a smooth series of monthly

temperatures since 2015. Let Y c,v = {Yc,v,m,m = 1, . . . ,12} be the vector that contains the ACM

counts by month in year v, v = 1, . . . ,5. Suppose each of the 12 constituent counts are Poisson

with mean ζc,v,m, for m = 1, . . . ,12. Then, within the year, conditional on the total ACM,

Y c,v |Y +
c,v ,pc,v ∼Multinomial(Y +

c,v ,pc,m),

where pc,v = {pc,v,m,m = 1, . . . ,12} with

pc,v,m =
ζc,v,m∑12
m=1ζc,v,m

,

We assume

log(ζc,v,m) = zc,v,mβ (3)

where zc,v,m is the temperature and β is the associated log-linear coefficient. The multinomial

model can be fitted in INLA using the Poisson trick (Baker, 1994) which involves fitting the

Poisson model for the data in country c, month m:

Yc,v,m|λc,v ∼ Poisson( λc,vezc,v,mβ ),

where the λc,v parameters are given (improper) priors π(λc,v) ∝ 1/λc,v . Further details may be

found in the Supplementary Materials.

To summarize, our strategy for producing expected numbers for countries with annual data

only is:

1. Fit a negative binomial spline model to the countries with annual counts only. Use the

spline to predict the total annual ACM for 2020 and 2021, for these countries.

2. In a separate exercise, fit the multinomial model to all of the countries with monthly

data, with deaths being attributed via the log-linear temperature model (3). This pro-

duces an estimate β̂.

3. Combine the spline model with the multinomial model using monthly temperature ap-

portionment to obtain expected numbers for the countries without monthly data.

3.3 Modeling Uncertainty in the Expected Numbers

For all countries the expected numbers appear directly in the excess calculation, (1). In ad-

dition, for countries with no pandemic ACM data, the Poisson model we adopt for covariate

modeling includes the expected number as an offset. For all countries and months, we ob-

tain not just an estimate of the mean expected mortality but also a measure of the uncertainty

(due to uncertainty in estimating the spline model) in this estimate. We now describe how the

uncertainty in the mean expected count is acknowledged in our modeling.
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For countries with monthly data, we use the spline model to predict the log of the mean ex-

pected number of deaths. Asymptotically, the estimator for the log of the mean expected

numbers is normal. Let η̂c,t′ and σ̂2
c,t′ represent the mean and standard deviation of the predic-

tion for pandemic months, labeled as t′ = 1, . . . ,24. We simulate S samples from the asymp-

totic normal sampling distribution with mean η̂c,t′ and standard deviation σ̂c,t′ ; denote these

samples by η(s)
c,t′ , s = 1, . . . ,S. We then transform the samples so that we have samples for the

expected numbers E(s)
c,t′ = exp(η(s)

c,t′ ), for s = 1, . . . ,S. We then use the method of moments to fit a

gamma distribution to these S samples with shape τc,t and rate τc,t′ /Ec,t′ . In particular, letting

mc,t′ denote the sample mean, and Vc,t′ denote the sample variance, we set Êc,t′ = mc,t′ and

τ̂c,t′ = m2
c,t′ /Vc,t′ . We approximate the distribution of the expected numbers as gamma, since

this is conjugate to the Poisson, and so allows efficient inference with INLA (Rue, Martino,

and Chopin, 2009) using a negative binomial, as we describe in Section 4. Effectively, we are

approximating the sampling distribution of the mean expected count, by a gamma.

We now consider a generic country c with yearly data only. In pandemic year v′, we use the

spline model to predict the log of the expected number of deaths. Let η̂c,v′ and σ̂2
c,v′ represent

the mean and standard deviation of the prediction, for v′ = 1,2 (the two pandemic years). We

then simulate S samples from a normal distribution with mean η̂c,v′ and standard deviation

σ̂c,v′ ; denote these samples by η(s)
c,v′ , s = 1, . . . ,S. We then transform the samples so that we have

samples for the expected numbers E(s)
c,v′ = exp(η(s)

c,v′ ), for s = 1, . . . ,S. We then apply the monthly

temperature model to produce predictions of the proportion of deaths in each month in each

year, i.e., for a given pandemic month m′, we have S samples of the predicted proportion

of deaths in month m′ of year v′, p(s)
c,v′ ,m′ , for s = 1, . . . ,S. Converting to pandemic cumulative

months t′ = 12(v′−1)+m′ we then produce samples of the expected number of deaths in month

t′, as E(s)
c,t′ = E(s)

c,v′ × p
(s)
c,v′ ,m′ . We then use the method of moments to fit a gamma distribution to

these S samples as for the countries with monthly data. To summarize, in both cases we have

a distribution for Ec,t′ which is Gamma(τ̂c,t′ , τ̂c,t′ /Êc,t′ ).
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4 Estimating all-cause mortality for years 2020 and 2021

4.1 Models for Countries with No Data

For countries with observed monthly national ACM data, Yc,t, we use these directly in the

excess calculation. In the countries with no data we need to estimate the ACM count. We follow

a Bayesian approach so that for countries without data we obtain a predictive distribution over

this count and this, when combined with the gamma distribution for the expected numbers,

gives a distribution for the excess δc,t.

While complex models that attempt to pick up data nuances are desirable, given the idiosyn-

crasies of the different data sources described in Section 2, any modeling exercise is fraught

with difficulties, and we resort to a relatively simple model in which we build an overdis-

persed Poisson log-linear regression model for the available monthly ACM data to predict the

monthly ACM in those countries with no data.

The basic starting model is

Yc,t |Ec,t ,θc,t ∼ Poisson(Ec,tθc,t), (4)

so that θc,t > 0 is a relative rate parameter, with θc,t >/< 1 corresponding to a higher/lower

ACM rate than expected, based on historic data. Recall, from Section 3, that we model the

distribution of the expected counts Ec,t as Gamma(τ̂c,t , τ̂c,t/Êc,t). When combined with (4), we

obtain the sampling model,

Yc,t |θc,t ∼NegBin(Êc,tθc,t , τ̂c,t)

with known overdispersion parameter τ̂c,t to give var(Yc,t |θc,t) = Êc,tθc,t(1 + Êc,tθc,t/τ̂c,t). The

mean is E[Yc,t |θc,t] = Êc,tθc,t. The relative rate parameter θc,t is modeled as,

logθc,t = α +
B∑
b=1

βbtXbct +
G∑
g=1

γgZgc + εc,t . (5)

The model details are:

• The intercept is α and the time-invariant covariates (e.g., SDI, historic diabetes rate) have

fixed association parameters γg .

• We have B time-varying covariates (e.g., sqrt(C19 death rate), test positivity rate, con-

tainment), and we allow the associations for these variables, βbt, to be time-varying via

a RW2 prior which has variance σ2
β . These parameters include a sum-to-zero constraint,

since we include a fixed effect for the overall association (across months) – these are

included in the G time-invariant part of the model.

• There are two sources of excess-Poisson variation in our model. The negative binomial

component, with known τ̂c,t, arises because of the uncertainty in the expected numbers,
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while the εc,t ∼ N(0,σ2
ε ) adjustments allow for overdispersion, given a fixed value of the

expected numbers.

• The Bayesian model is completed by prior specifications on the regression coefficients

of the loglinear model and any hyperparameters. We use default priors (normal with

large variance) on the intercept and fixed association parameters, and penalized com-

plexity (PC) priors on the RW2 standard deviations and on σε (Simpson, Rue, Riebler,

Martins, and Sørbye, 2017). Specifically, letting σβ denote a generic RW2 standard devi-

ation parameter, the PC priors are such that Pr(σβ > 1) = 0.01, and the PC prior on the

overdispersion parameter σε has Pr(σε > 1) = 0.01.

Each country will clearly have its own specific temporally correlated baseline, as a result of

unobserved covariates and model misspecification, but we did not include terms to model

such a baseline (using a RW2 or a spline, for example), since fits from this model are not

being used to estimate the excess for countries with data. Rather, we are using this model to

predict the ACM for countries with no data. Hence, we did not use RW2 intercepts as these

would dilute the covariate effects, due to confounding by time (Kelsall, Zeger, and Samet,

1999), and it is these covariate effects that are key to prediction for countries with no data.

If we had included a RW2 baseline, then a country-specific RW2 model would give estimated

contributions of zero in countries with no data and so would not provide any benefit. This

is but one of the model assumptions that are forced upon us by the limited data we have

available. The country-level model was fitted using the INLA method (Rue et al., 2009) and

accompanying R implementation.

For countries with no ACM data, we obtain a predictive distribution by averaging the negative

binomial model with respect to the posterior via,

Pr(Yc,t |y) =
∫

Pr(Yc,t |θc,t)︸       ︷︷       ︸
Negative Binomial

×p(θc,t |y)︸   ︷︷   ︸
Posterior

dθc,t .

We use INLA to fit the covariate model, and then use the posterior sampling feature to produce

samples for the components of (5), which in turn produces samples θ(s)
c,t ∼ p(θc,t |y) from the

posterior.

and we then then simulate Y (s)
c,t |θ

(s)
c,t from the negative binomial, for s = 1, . . . ,S.

Partial monthly data is available for 27 countries, and for these we require a switch from

observed data to the covariate modeled ACM. The naive application of the covariate model will

lead to the possibility of unrealistic jumps (up or down) when we switch from the observed

data to the covariate model, and to alleviate this problem we benchmark the predictions to the

last observed data point. We let T (1)
c represent the number of observed months of data and T (2)

c

be the number of months for which there is no data, for country c. For a country with partial
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data, let y(1)
c = [yc,1, . . . , yc,T (1)

c
] represent the observed partial data. We then wish to predict the

ACM counts y(2)
c = [y

c,T
(1)
c +1

, . . . , y
c,T

(1)
c +T (2)

c
] for the missing period. The model for the missing

data period is,

y
(2)
c,t |y

(2)
c ,θc,t , fc ∼NegBin(Êc,tθc,tfc, τ̂c,t), (6)

for t = T (1)
c +1, . . . ,T (1)

c +T (2)
c , where θc,t is a function of the covariates in the missing data period

(specifically given by (5)), and the benchmarking factor is,

fc = fc
(
θ
c,T

(1)
c

)
=

y
c,T

(1)
c

Ê
c,T

(1)
c
θ
c,T

(1)
c

,

where θ
c,T

(1)
c

is given by equation (5). This factor matches the last observed death count to the

covariate model projected back to the last observed count. This factor is applied subsequently

to all of the missing data months. To implement the benchmark, samples from the posteriors

for θc,t and fc are used in (6), and then negative binomial counts are drawn.

4.2 Subnational Data Model

For a small number of countries for which national ACM data are not available (e.g., Argentina,

India, Indonesia and Turkey) we instead have ACM data from subregions, with the number

of regions with data potentially changing over time. For other countries we obtain national

annual ACM data only, while for China we have subnational monthly and national annual

data. In this section we describe the models we use in these situations.

For the subnational scenario we construct a statistical model building on, and expanding, a

method previously proposed by Karlinsky (2022) that is based on a proportionality assump-

tion.

For Turkey we have subnational monthly data over the complete two years of the pandemic,

while for Indonesia we have annual subnational data for 2020 and for the first six month of

2021. Argentina has observed data for 2020 and subnational monthly data for 2021. India

has data from up to 17 states (out of 26) over the pandemic period, but this number varies by

month.

We consider the most complex subnational scenario in which the number of regions with

monthly data varies by month, using India as an example. For India, we use a variety of sources

for registered number of deaths at the state and union-territory level. The information was ei-

ther reported directly by the states through official reports and automatic vital registration,

or by journalists who obtained death registration information through Right To Information

requests.

For the historic data in month t we have total deaths counts along with counts over regions,

Yt,k , k ∈ Kt, so that in period t, |Kt | is the number of regions that provide data with k ∈ Kt being

the indices of these areas from 1, . . . ,K .
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We let region 0 denote all other regions, which are not observed in pandemic times, at time t

and St = {0,Kt}. We assume, in month t:

Yt,k |λt,k ∼ Poisson(Nt,kλt,k), k ∈ St ,

where Nt,k is the population size, and λt,k is the rate of mortality. Hence,

Yt+|λt,k , k ∈ St ∼ Poisson

∑
k∈St

Nt,kλt,k

 .
If we condition on the total deaths, we obtain

Y t |pt ∼Multinomial|St |(Yt+,pt),

with pt = {pt,k , k ∈ St}, with

pt,k = Pr( death in region k |month t, death ) =
Nt,kλt,k
Nt,+λt,+

,

Our method hinges on this ratio being approximately constant over time. If, over all regions,

there are significant changes in the proportions of deaths in the regions as compared to the

national total, or changes in the populations within the regions over time, then the approach

will be imprecise.

We model the monthly probabilities as,

log
(
pt,k
pt,Kt+1

)
= αk + et , k ∈ St , (7)

where the αk parameters are unrestricted and et ∼N(0,σ2
ε ), and we examine the size and tem-

poral structure of the error terms et, to assess the proportionality assumption, at least over the

available pre-pandemic period.

To specify the model, we take a multinomial with a total number of categories that corresponds

to all regions that appear in the data, K , and specify the likelihood over all months by exploit-

ing the property that a multinomial collapsed over cells is also multinomial. Hence, in year t

we have a multinomial with |Kt |+ 1 categories with constituent probabilities constructed from

the full set of K + 1 probabilities.

To derive the predictive distribution, we abuse notation and let Yt,1 denote the total number

of observed subnational deaths at time t, and Yt,2 the total number of unobserved subnational

deaths at time t, with Yt,+ = Yt,1 + Yt,2 being the total (national) number of deaths at time

t. Hence, at time t, Yt,1|pt ,Yt,+ ∼ Binomial(Yt,+,pt), where pt =
∑
k∈Kt pt,k . In order to fit the

multinomial model in a Bayesian framework and predict the total number of deaths in 2020–

2021, we need to specify a prior for Yt,2 or, equivalently, for Yt,+, where t indexes months in

this period. We will use the prior p(Yt,+) ∝ 1/Yt,+, which is a common non-informative prior for
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a binomial sample size (Link, 2013), and has the desirable property that the posterior mean

for Yt,2, conditional on pt, is E[Yt,2|pt] = Yt1(1 − pt)/pt, i.e., of the same form as the simple

frequentist “obvious” estimator.

To give more details for implementation we will use a general result. Suppose

Yt,1|Yt,+,pt ∼ Binomial(Yt,+,pt)

p(Yt,+) ∝ 1/Yt,+,

so that, in particular, the marginal distribution of Y+t does not depend on pt. Then the poste-

rior for the missing ACM count, conditional on pt, is

Yt,+|Yt,1,pt ∼ Yt,1 + NegBin(Yt,+,1− pt),

or, equivalently,

Yt,+ −Yt,1|Yt,1,pt ∼NegBin(Yt,1,1− pt).

This links to one of the usual motivations for a negative binomial (number of trials until we

observe a certain fixed number of events) — making inference for the number of total deaths

it takes to produce Yt,1 deaths in the sub-regions. We implement this model in Stan. In the

Appendix we detail a simulation study that validates the method in the situation in which the

missing data follow the assumed form.

For the other countries with subnational data, the number of subregions is constant over time,

and so in the above formulation the multinomial is replaced by a binomial. Details for these

countries are in the Supplementary Materials. For Indonesia we have annual subnational for

2020 and so we use a national binomial model and then apportion the counts using the multi-

nomial temperature model described in Section 3.2.

4.3 Mixed Data Models and Special Cases

We have annual national ACM counts for Viet Nam, Grenada, Sri Lanka, Saint Kitts and Nevis,

and Saint Vincent and the Grenadines. For these countries we estimate the monthly counts

using a multinomial model in which the loglinear covariate model (5) is used to apportion the

total count to months.

For China, we have annual national data and also subnational monthly data for the first 9

months of each of 2020 and 2021. In the Supplementary Materials we describe a model for

combining the two types of data and an MCMC implementation.

14



5 Methods for deriving sex- and age-pattern

Beyond determining the levels of excess mortality attributable to COVID-19, we intend to dis-

aggregate these deaths by age and sex. For most countries, the sex and age attributes are not

identified in the mortality data that are available for years 2020 and 2021. These are nec-

essary inputs when one begins to look at sex and age differentials, impact relative to other

causes as well as life tables, and the impact on life expectancy. In particular, these are re-

quired for the current year Global Health estimates and projections within the World Popula-

tion Prospects.

To generate estimates of excess mortality by age and sex we consider the expected sex and age

profile for the years 2020 and 2021 and assess the difference in the expected and the observed

in the places with reported data. For a specific location, the observed/reported death numbers

for an age-group x, sex s, country c in year y, can be represented by

Yc,y,s,x

and are assumed to be a result of the direct effects of COVID-19 (deaths attributable to it) and

the indirect knock-on effects on health systems and society. The hypothetical or ”counterfac-

tual” no-COVID-19 scenario uses the expected death numbers

Ec,y,s,x

which are forecasted using historical data. Excess deaths by sex and age, represented by δc,y,s,x,

can thus be defined as the difference:

δc,y,s,x = Yc,y,s,x −Ec,y,s,x

As with the approach taken for deaths over all ages and for both sexes combined, the goal is

to determine standard patterns of excess mortality by sex and age for the places with reported

data and then generalize them to the other countries without. Simultaneously, we aim to

propagate the uncertainty in the overall excess death numbers for the years 2020 and 2021

(predicted using the statistical models for overall mortality) to the predicted sex- and age-

patterns. The steps towards accomplishing this are described in more detail in the sections

that follow.

5.1 Countries with observed sex-age data for years 2020 and 2021

We consider country- and sex-specific deaths for the year 2020 aggregated to 5-year age-bands

x ∈ {0−4,5−9, . . . ,85+}. Of interest is the location- and year-t-specific death-rate in age interval

[x,x + n), represented by nmx,t which is calculated using the counts and the population num-

bers according to WPP2019. Only a subset of countries has observed data to estimate these
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quantities at this level of granularity for 2020 and 2021. Of these, excluding the countries that

have experienced conflict, have very small population numbers, incomplete deaths and/or

have erratic/implausible age-patterns, the countries with age-sex patterns we have applied in

a model framework are listed in Table 2 below:

Table 2: Countries with age and sex data used in model

ISO3C WHO region Population 2019 Deaths 2020 Deaths 2021

1 ALB EURO 2877800 39204 43429

2 AUS WPRO 25499881 162333 168685

3 AUT EURO 9006400 93476 93175

4 BEL EURO 11589616 132411 117500

5 BGR EURO 6948445 124823 148203

6 BRA AMRO 212559409 1608136

7 CHE EURO 8654618 77613 71519

8 CHL AMRO 19116209 126178 137667

9 COL AMRO 50882884 301705

10 CYP EURO 1207361 7002 7625

11 CZE EURO 10708982 129289 140564

12 DEU EURO 83783945 986018 1017531

13 DNK EURO 5792203 54790 57363

14 ECU AMRO 17643060 126523

15 ESP EURO 46754783 506331 468096

16 EST EURO 1326539 15864 18665

17 FIN EURO 5540718 56926 58944

18 FRA EURO 65273512 654772 643178

19 GBR EURO 67886004 703504 683116

20 GRC EURO 10423056 132134 145102

21 HRV EURO 4105268 57261 63085

22 HUN EURO 9660350 141092 155418

23 IRL EURO 4937796 31981

24 IRN EMRO 83992953 504872

25 IRQ EMRO 40222503 203651

26 ISR EURO 8655541 48753 50769

27 ITA EURO 60461828 756293 717949

28 JPN WPRO 126476458 1384544

29 KAZ EURO 18776707 160872 180287

30 KOR WPRO 51269183 306226 318282

31 LTU EURO 2722291 48299 52233

32 MEX AMRO 128932753 1065357

33 MUS AFRO 1271767 11271

34 NLD EURO 17134873 170443 172409

35 NOR EURO 5421242 40867 42046

36 NZL WPRO 4822233 32745 34878
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37 PER AMRO 32971846 280706

38 POL EURO 37846605 478578 519896

39 ROU EURO 19237682 297122 334239

40 RUS EURO 145934460 2138586

41 SGP WPRO 5850343 27722 30463

42 SRB EURO 8737370 133273 154700

43 SVK EURO 5459643 59210 72685

44 SVN EURO 2078932 24246 23192

45 SWE EURO 10099270 102022 96755

46 TUN EMRO 11818618 75058

47 UKR EURO 43733759 630859

48 URY AMRO 3473727 32638

49 USA AMRO 331002647 3504924 3583956

50 ZAF AFRO 59308690 581618

5.2 Grouping countries to generalize sex-age patterns

We consider how to group the countries with data in order to extrapolate any of the estimated

2020/2021 impacts to the locations without. A natural grouping would be geographically

using some regional identification e.g., the WHO region. However, this poses two dilem-

mas:

1. Not all regions are represented adequately in the observed data e.g., there are no coun-

tries from SEARO region and there is only one country from AFRO.

2. Even within close geographic proximity, the scale of the impact of the pandemic overall

and thus potentially by sex and age, varies e.g., Finland shares borders with Russia but

the reported excess rates for the countries is on significantly different orders if magni-

tude.

Instead of using the natural geography to group the data, we allow the data to drive the clus-

ters. We apply the K-means clustering approach (Likas, Vlassis, and Verbeek, 2003). K-means

is a method commonly used to automatically partition a data set into K groups. The K-means

method uses K centers of clusters, to characterize the data. These centers are determined by

minimizing the sum of squared errors,

JK =
K∑
k=1

∑
i∈Ck

(xi −mk)
2

where (x1, . . . ,xn) = X is the data matrix and mk =
∑
i∈Ck xi/nk is the centroid of cluster Ck and

nk is the number of points in Ck .

There are many options of features that could be used to create the data matrix X which is
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informing the clusters. Using the human development index (HDI) (Anand and Sen, 1994) for

2019, the age-specific all-cause deaths in 2019 Yx,2019, the estimated/reported total deaths in

2020 Ŷ2020, age-specific population in years 2019 and 2020, Nx,2019 and Nx,2020 respectively,

and the predicted overall excess deaths for 2020, δ, we consider three features in total (one of

which relates to the predicted excess mortality attributable to COVID-19):

(i) For each country, the human development index for year 2019:

f1 = hdi

(ii) For each country, the mean age at death in 2019:

f2 =
∑
x x ×Yx,2019∑
xYx,2019

(iii) For each country, the crude excess mortality rate for 2020:

f3 =
δ∑

xNx,2020

These are derived for each of the 194 member states and normalized to derive the mathbf X

matrix:

X(194,3) =



j 1 2 3

1 f1,1 f2,1 f3,1
...

...
...

...

j fj,1 fj,2 fj,3
...

...
...

...

194 f194,1 f194,2 f194,3


For the subset of countries with observed sex- and age-specific data for 2020, the K-means

approach is applied. The number of clusters K is chosen to maximise the variation between

clusters and to minimise the variation within clusters. Five clusters are selected. The resultant

cluster compositions are shown in Figure 1 with Table 3 listing cluster constituents:
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Figure 1: K-means cluster allocation by ISO3C
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Table 3: K-means cluster allocation by ISO3C

1 2 3 4 5

BGR AUT ALB AUS BRA

ECU BEL CHL CYP COL

LTU CHE CZE DNK IRN

MEX DEU ESP FIN IRQ

PER FRA HRV GRC ZAF

RUS GBR HUN IRL

SWE ITA ISR

POL JPN

ROU KOR

SRB SGP

SVK

USA

5.3 Extrapolating cluster groupings to countries without observed data

The K-means clusters provide groupings for the data based on the HDI, the mean age at death,

as well as the overall excess mortality rates and porportion of total deaths. Not all countries

are included in the original clustering as this was done for a subset to ensure that all countries

with data are clustered into optimal bins. However, we require all countries to be assigned to

clusters and this is accomplished by mapping each country to the 5 K-mean clusters using the

multivariate minkowski distance (Singh, Yadav, and Rana, 2013) between the X matrix values

and the cluster averages shown in the Table 4:
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Table 4: K-means cluster average normalised values

Cluster HDI Mean age at death Crude excess rate

1 0.517 0.531 1.470

2 1.433 1.205 0.066

3 0.922 0.971 0.611

4 1.409 1.140 -0.579

5 0.296 0.310 0.205

5.4 Extrapolating sex-age impact to countries without observed data

To capture the Covid-19 excess mortality impact for the years 2020 and 2021 for the coun-

tries with observed data as well as those without, requires expected death numbers by sex and

age. The expected death numbers by age and sex are derived using the GHE2019 age-sex pat-

terns rebalanced to the expected death numbers that are derived for the overall longitudinal

mortality model. This enforces consistency in the expected numbers and also minimizes any

potential bias that can be introduced in the single year forecast that would otherwise be nec-

essary to derive the expected deaths for 2020. Acknowledging the uncertainty inherent in the

GHE2019 estimates and that this is a very short forecast, we assume that changes in the sex-

and age-pattern between observed 2019 and expected 2020 are minimal after adjusting for the

level through the aggregate projection.

For the countries with data and listed in the table above (we exclude the countries with low

death numbers and zero inflated counts), for each sex and by age-group, we look at the scale

rc,y,s,x:

rc,y,s,x =
(
log(Yc,y,s,x/Nc,y,s,x)

log(Ec,y,s,x/Nc,y,s,x)

)
where Nc,y,s,x are the population counts. This quantity contrasts the observed log mortality

rate against the expected to capture the sex- and age-specific changes for 2020. The K-means

clusters are used for two aspects of the extrapolation to locations without data. Firstly, to sum-

marise these log mortality scalars into cluster specific distributions. And secondly, to derive

country-specific estimates of predicted deaths by sex and age, conditional on the clusters the

country lies in.

For each cluster k (and by extension, each country j in the cluster k), we generate sex-specific

distribution for the rs,x scalars based on the observed data (dropping subscripts c and y for

simplicity). The empirical bootstrap distribution is generated by first smoothing the observed

series by age for each country in the cluster and then repeatedly sampling from the smooth
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series. The range of possible values by age is assumed to be a Gaussian approximate with

distribution.

r̂ks,x ∼N (r̄ks,x,σ
k
s,x)

where r̄ks,x and σ ks,x are the sex s and age x specific mean and standard deviations for cluster

k derived using the smoothed draws of the observed data. Following recommendations from

the United Nations Interagency Group for Child Mortality Estimation (UNIGME), we do not

extrapolate any protection or otherwise to children and young adults. Figures 2 to 4 are of the

observed and smoothed series and are filtered by cluster:
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Figure 2: Smoothed ratio by age and sex for clusters 1 to 2
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Figure 3: Smoothed ratio by age and sex for clusters 3 to 4
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Figure 4: Smoothed ratio by age and sex for cluster 5
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The samples of the scalars are combined with the sex s and age x specific expected death rates

by country and the sex-age-specific population numbers to generate predicted deaths by age

and sex:

Ŷs,x,2020 = exp(nµ
e
s,x,2020 × r̂

k
s,x)×Ns,x,2020

where nµ
e
s,x = log(nmes,x). The ˆYs,x are rescaled to correspond to a random realization from the

Poisson count model Ŷ to produce the final Ỹs,x i.e.

Ỹs,x =
Ŷs,x∑
s
∑
x Ŷs,x

× Ŷ

This process is repeated 1,000 times for each country, drawing unique samples of r̂s,x and all-

cause mortality Ŷ ∼ N (Ȳ ,σY ) each time. These are used to generate country-specific distribu-

tions (and uncertainty intervals) of deaths by sex and age. The uncertainty shown is the prop-

agation of the uncertainty from the K-means cluster smoothed draws and the Poisson count

model draws but should not be interpreted as being parametric or containing a hypothetical

”true” value. Rather it shows a range of plausible values conditional on the distribution of the

total predicted deaths, the expected deaths and the cluster identified for the country.
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6 Model assessment

The sampling model we assume is,

Yc,t |θc,t ∼NegBinomial(Êc,tθc,t , τ̂c,t)

with known overdispersion parameter τ̂c,t to give var(Yc,t |θc,t) = Êc,tθc,t
(
1 + Êc,tθc,t/τ̂c,t

)
. The

mean is E[Yc,t |θc,t] = Êc,tθc,t.

We wish to assess whether the covariate model provides a good fit to the data. To this end we

perform a number of model checks:

1. Plot fitted values ŷc,t versus observed values yc,t. The fitted values are given by Ŷc,t =

Êc,tθ̂c,t where θ̂c,t is the posterior median. We color code the points by region.

These plots are created both for in-sample, and out-of-sample via cross-validation in

which data from either a complete country or a complete month are removed.

2. Plot standardized residuals versus time, color coded by region. Standardized residuals

are:

rc,t =
yc,t − ŷc,t√

Êc,tθ̂c,t
(
1 + Êc,tθ̂c,t/τ̂c,t

)
3. To compare models we use log CPO.

The measure we use for assessing models in the CV exercise is the log conditional pre-

dictive ordinate (LCPO). For country c let Mc be the set of months for which ACM data

are observed. An overall measure of the fit of a model for the country CV scheme is:

LCPO-C =
1∑
c |Mc|

∑
c

∑
t∈Mc

logPr(yc,t |y−c),

i.e., the log of the predictive distribution obtained from all data with country c left out,

and evaluated at yc,t. Similarly, for the MCV scheme:

LCPO-M =
1∑
c |Mc|

∑
c

∑
t∈Mc

logPr(yc,t |y−ct).

In each case, the predictive is the sampling model for the data (negative binomial in our

case), averaged over the posterior, given the retained data. For example, with country c

left out:

Pr(yc,t |y−c) =
∫
θ

∫
φ

Pr(yc,t |θ,φ)× p(θ,φ|y−c) dθdφ. (8)

4. We assess the errors in our model, also using CV, over the countries with ACM data. Let

rc,t = Yc,t/Nc,t be the observed rate and r̂c,t = Ŷc,t/Nc,t where Ŷc,t = PostMedian(Yc,t |y−ct) be
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the estimated rate. We report the absolute and relative biases of the ACM rate:

1∑
c |Mc|

∑
c

∑
t∈Mc

r̂c,t − rc,t
rc,t

. (9)

and
1∑
c |Mc|

∑
c

∑
t∈Mc

|̂rc,t − rc,t |
rc,t

. (10)

These measures can be calculated where the estimated rates are based on data with a

complete country or a complete month’s data are left out.

5. We also calculate the root mean squared error (RMSE) of the fit:√
1∑
c |Mc|

∑
c

∑
t∈Mc

(̂rc,t − rc,t)2

again using the two cross-validation schemes (by month and by country).

6. Coverage of predictive intervals from cross-validation exercises.

For India, we remove one state at a time and examine the sensitivity of the results, in terms

of both the monthly time series of excess, and the cumulative by month. We also remove

one state at a time, and then estimate the number of deaths we would see in this state using

the estimated fraction of the total deaths in that State and the predictive distribution of the

national ACM.

Final Model

R-RATE-C 1.98

A-RATE-C 10.08

RMSE-C (×1000) 1.25

LOO-C Coverage - 50% Interval 59.3

LOO-C Coverage - 80% Interval 82.7

LOO-C Coverage - 95% Interval 91.6

R-RATE-M 1.84

A-RATE-M 10.18

RMSE-M (×1000) 1.24

LOO-M Coverage - 50% Interval 57.8

LOO-M Coverage - 80% Interval 83.7

LOO-M Coverage - 95% Interval 92.9

Table 5: Leave one country and month out model assessment measures. All rates are expressed

as percentages.

We consider the excess δc,t = Yc,t − Ec,t and assess the model performance using the mean

relative error of predicted excess mortality rate, as used in Wang, Paulson, Pease, Watson,

Comfort, Zheng, Aravkin, Bisignano, Barber, Alam, et al. (2022):
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Figure 5: In-sample observed versus predicted, color-coded by region.
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Figure 6: Out-of-sample observed versus predicted: Left: country removed. Right: month

removed. Color-coded by region.
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Figure 7: In-Sample standardized residuals over time, color-coded by region.
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